• Title/Summary/Keyword: Molecular medicine

Search Result 6,762, Processing Time 0.029 seconds

Monitoring Gene Therapy by Radionuclide Approaches (핵의학적 기법을 이용한 유전자 치료 영상법)

  • Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

Hypoxia Upregulates Mitotic Cyclins Which Contribute to the Multipotency of Human Mesenchymal Stem Cells by Expanding Proliferation Lifespan

  • Lee, Janet;Kim, Hyun-Soo;Kim, Su-Min;Kim, Dong-Ik;Lee, Chang-Woo
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • Hypoxic culture is widely recognized as a method to efficiently expand human mesenchymal stem cells (MSCs) without loss of stem cell properties. However, the molecular basis of how hypoxia priming benefits MSC expansion remains unclear. In this report, our systemic quantitative proteomic and RT-PCR analyses revealed the involvement of hypoxic conditioning activated genes in the signaling process of the mitotic cell cycle. Introduction of screened two mitotic cyclins, CCNA2 and CCNB1, significantly extended the proliferation lifespan of MSCs in normoxic condition. Our results provide important molecular evidence that multipotency of human MSCs by hypoxic conditioning is determined by the mitotic cell cycle duration. Thus, the activation of mitotic cyclins could be a potential strategy to the application of stem cell therapy.

Comparative study of linear and cyclic forms of apoptosis-targeting peptide

  • Ha, Yeong Su;Soni, Nisarg;Huynh, Phuong Tu;Lee, Byung-Heon;An, Gwang Il;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.96-102
    • /
    • 2016
  • Apoptosis, a genetically determined process of programmed cell death, is considered a vital component of various processes including normal cell turnover, animal development, and tissue homeostasis. It has a crucial role in many medical disorders and hence the development of non-invasive imaging tool is highly demanded. Recently, we have developed a peptide-based radioactive probe (ApoPep-1) for apoptosis detection. In that work the potential of probe for apoptosis detection was verified, however in vivo stability of radiolabeled peptide was not enough to monitor apoptosis for extended period. In current study, we prepared cyclic ApoPep-1 peptides to improve the stability of origianl linear ApoPep-1 and carried out direct comparison studies in vitro and in vivo. A targeting efficacy of newly synthesized cyclic ApoPep-1 peptide for apoptosis was confirmed in acute myocardial infarct model.

Neuron-specific expression of p48 Ebp1 during murine brain development and its contribution to CNS axon regeneration

  • Ko, Hyo Rim;Hwang, Inwoo;Ahn, So Yoon;Chang, Yun Sil;Park, Won Soon;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.126-131
    • /
    • 2017
  • P48 Ebp1 is expressed in rapidly proliferating cells such as cancer cells and accelerates cell growth and survival. However, its expression pattern and role in central nervous system development have not been studied. Here, we demonstrated the spatiotemporal expression pattern of p48 Ebp1 during embryonic development and the postnatal period. During embryonic development, p48 Ebp1 was highly expressed in the brain. Expression gradually decreased after birth but was still more abundant than p42 expression after birth. Strikingly, we found that p48 Ebp1 was expressed in a cell type specific manner in neurons but not astrocytes. Moreover, p48 Ebp1 physically interacted with beta tubulin but not alpha tubulin. This fits with its accumulation in distal microtubule growth cone regions. Furthermore, in injured hippocampal slices, p48 Ebp1 introduction promoted axon regeneration. Thus, we speculate that p48 Ebp1 might contribute to microtubule dynamics acting as an MAP and promotes CNS axon regeneration.

Transcriptional Heterogeneity of Cellular Senescence in Cancer

  • Junaid, Muhammad;Lee, Aejin;Kim, Jaehyung;Park, Tae Jun;Lim, Su Bin
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.610-619
    • /
    • 2022
  • Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.

Molecular Genetic Diagnosis of Inherited Metabolic Diseases (유전성 대사 질환의 분자 유전학적 진단)

  • Ki, Chang-Seok;Lee, Su-Yon;Kim, Jong-Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.108-115
    • /
    • 2005
  • Inherited metabolic diseases (IMD) comprise a large class of genetic diseases involving disorders of metabolism. The majorities are due to defects of single genes that code for enzymes that facilitate conversion of various substances into others. Because of the multiplicity of conditions, many different diagnostic tests are used for screening of IMD. Molecular genetic diagnosis is the detection of pathogenic mutations in DNA and/or RNA samples and is becoming a much more common practice in medicine today. The purpose of molecular genetic testing in IMD includes diagnostic testing, pre-symptomatic testing, carrier screening, prenatal diagnosis, preimplantation testing, and population screening. However, because of the complexity, difficulty in interpreting the result, and the ethical considerations, an understanding of technical, conceptual, and practical aspects of molecular genetic diagnosis is mandatory.

  • PDF

Guinea pig cysteinyl leukotriene receptor 2 (gpCysLT2) mediates cell proliferation and intracellular calcium mobilization by LTC4 and LTD4

  • Ito, Yoshiyuki;Hirano, Minoru;Umemoto, Noriko;Zang, Liqing;Wang, Zhipeng;Oka, Takehiko;Shimada, Yasuhito;Nishimura, Yuhei;Kurokawa, Ichiro;Mizutani, Hitoshi;Tanaka, Toshio
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • We cloned and pharmacologically characterized the guinea pig cysteinyl leukotriene (CysLT) 2 receptor (gpCysLT2). gpCysLT2 consists of 317 amino acids with 75.3%, 75.2%, 73.3% identity to those of humans, mice and rats, respectively. The gpCysLT2 gene is highly expressed in the lung, moderately in eosinophils, skin, spleen, stomach, colon, and modestly in the small intestine. CysLTs accelerated the proliferation of gpCysLT2-expressing HEK293. Leukotriene C4 (LTC4) and Leukotriene D4 (LTD4) enhanced the cell proliferation higher than Bay-u9773, a CysLT2 selective partial agonist and a nonselective antagonist for CysLT receptors. Bay-u9773 did not antagonize the cell proliferation by LTC4 and LTD4. Despite the equipotency of the mitogenic effect among these chemicals, calcium mobilization (CM) levels were variable (LTC4 > LTD4 >> Bay-u9773), and Bay-u9773 antagonized the CM by LTC4. Moreover, the Gi/o inhibitor pertussis toxin perfectly inhibited agonist-induced cell proliferation. These results reveal that cell proliferation via CysLT2 signaling was mediated by Gi/o signaling but independent of calcium mobilization.

The role of neuroinflammation on the pathogenesis of Parkinson's disease

  • Chung, Young-Cheul;Ko, Hyuk-Wan;Bok, Eu-Gene;Park, Eun-Soo;Huh, Sue-Hee;Nam, Jin-Han;Jin, Byung-Kwan
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.225-232
    • /
    • 2010
  • Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.