• Title/Summary/Keyword: Molecular imprinting Polymer

Search Result 20, Processing Time 0.024 seconds

Effect of Functional Monomer on Retention Factor of Chiral Racemate (기능성 단량체가 키랄 물질의 체류인자에 미치는 영향)

  • Jin, Yin-Zhe;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2005
  • In this work, molecular imprinted polymers (MIPs) using the template of the N-CBZ (carbobenzyloxy)-L-phenylalanine, MAA and 4-VPY as a monomer, EGDMA as a crosslinker and AIBN as an initiator were considered. The prepared polymer particles $(Ca.\;25-35\;{\mu}m)$ were packed into a chromatographic column $(3.9\;\times\;150\;mm)$. The chromatographic characteristics of the retention on the MIP were experimented with acetonitrile as a mobile phase at the flow rate of mobile phase, 0.5 ml/min. The retention factors and resolutions of chiral racemate of the N-CBZ-D, L-phenylalanine were measured. The results showed that the retention factor and resolution by the two co-monomer imprinting polymer were higher than the single monomer imprinting polymers, which indicated an increase in the affinity of the MIP with the sample as a result of the cooperation effect of the binding sites.

Design and Applications of Molecularly Imprinted Polymers for Selective Separations (선택적 분리를 위한 분자 각인 고분자의 설계 및 응용)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF

Effect of polymer substrates on nano scale hot embossing (나노 사이즈 hot embossing 공정시 폴리머의 영향)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Synthesis of Molecularly Imprinted Polymers for Chiral (S)-Ibuprofen and Their Molecular Recognition Mechanism (키랄(S)-이부푸로펜 함유 고분자의 합성과 제조된 고분자의 분자 인식 메카니즘)

  • Huangfu, Fengyun;Wang, Bing;Sun, Yan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.288-293
    • /
    • 2013
  • A group of molecularly imprinted polymers (MIPs) with specific recognition for chiral (S)-ibuprofen were successfully prepared based on hydrogen bonds, utilizing ${\alpha}$-methacrylic acid as a functional monomer. The IR analysis of MIPs showed that the blue- and red-shifted hydrogen bonds were formed between templates and functional monomers in the process of self-assembly imprinting and re-recognition, respectively. According to UV-Vis analysis, we found that the ratio of host-guest complexes between template molecule and functional monomer was 1:1. The effect of cross-linker's quantity on the polymerization was studied by transmission electron microscope (TEM). The adsorption selectivity experiments indicated that MIPs exhibited higher selectivity to (S)-ibuprofen than those to ketoprofen and (R)-ibuprofen, (S)-ibuprofen's structural analogs.

Adsorption and Release Characteristics of Sulindac on Chitosan-based Molecularly Imprinted Functional Polymer Films (키토산 기반 분자 각인 고분자 필름의 슐린닥 흡착 및 방출 특성)

  • Yoon, Yeon-Hum;Yoon, Soon-Do;Nah, Jae Woon;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • Molecular recognition technology has attracted considerable attention for improving the selectivity of a specific molecule by imprinting it on a polymer matrix. In this study, adsorption and release characteristics of chitosan based drug delivery films imprinted with sulindac (SLD) were investigated in terms of the plasticizer, temperature and pH and the results were also interpreted by the related mathematical models. The adsorption characteristics of target molecules on SLD-imprinted polymer films were better explained by the Freundlich and Sips equation than that of the Langmuir equation. The binding site energy distribution function was also useful for understanding the adsorption relationship between target molecules and polymer films. The drug release of SLD-imprinted polymer films followed the Fickian diffusion mechanism, whereas the drug release using artificial skin followed the non-Fickian diffusion behavior.

Preparation of Molecularly Imprinted Poly(methacrylic acid) and Its HPLC Separation Characteristics of Retinoids (분자각인 Poly(methacrylic acid)의 제조 및 레티노이드 화합물의 HPLC 분리 특성)

  • 남기훈;권영돈;김덕준
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.710-717
    • /
    • 2002
  • Molecularly imprinted polymers were prepared in particle forms by crosslinking methacrylic acid (MAA)) using all trans-retinoic acid as a template. The HPLC column packed with the prepared molecular imprinted polymers showed high capability in separation of retinoid derivatives. The column capacity factor and selectivity increased with increasing MAA to template ratio when the incorporated template amount was fixed, as it statistically generated more binding sites between host molecules and template. Molecularly imprinted polymer particles prepared via an emulsion polymerization method were round-shaped and their sizes were more uniformly distributed, but their separation capability was inferior to those obtained by solution polymerization method. It was presumably because the loss of interaction strength between MAA and the template due to hydrogen bonding either between MAA and water or between template and water during the synthesis of molecularly imprinted polymers.

Binding Characteristics of Molecularly Imprinted Polymers for Ibuprofen Enantiomers (아이뷰프로펜 이성질체에 대한 molecularly imprinted polymers의 binding 특성)

  • 신명근;조규헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • The molecularly imprinted polymers(MIPs) synthesized at various polymerization conditions were examined as ibuprofen receptors in terms of binding characteristics. The 4-vinylpyridine polymers had 1.2 times higher adsorption capability for (S)-(+)-ibuprofen than the methacrylic acid polymers. The methacrylic acid polymers synthesized by UV radiation had 1.9 times higher selectivity for (S)-(+)-ibuprofen compared to those by thermal initiation. Effects of various solvents for binding were also examined in this research. According to the Scatchard analysis, the (S)-(+)-ibuprofen artificial receptors had two different kinds of binding sites for (S)-(+)-ibuprofen while having only single kind of binding site for ketoprofen. The binding sites of (S)-(+)-ibuprofen, n were calculated as 4.3~4.9 $\mu$mol/g and the dissociation constants, $K_D$ were 0.68 mM for the specific binding.

  • PDF

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.