• Title/Summary/Keyword: Molecular electronics

Search Result 266, Processing Time 0.026 seconds

Dielectric Relaxation Properties of DMPC Organic Thin Films for Nanotechnology (나노기술을 위한 DMPC 유기박막의 유전완화특성)

  • Chol, Young-Il;Cho, Su-Young
    • 전자공학회논문지 IE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DMPC using pressure stimulus. As a result, It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid monomolecular, it is found that be characteristic of insulation generated it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

Electrochemical Properties of Self-Assembled Viologen Monolayers Using Quartz Crystal Analyzer (QCA를 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Park, Jae-Chul;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.141-144
    • /
    • 2004
  • Molecular self-assembled of surfactant viologens are recently interesting because they can be from functional electrodes as well as micelle assemblies which can be profitably utilized for display devices, electrochemical studies and electrocatalysis as electron acceptor or electron mediator. The electrochemical behavior of self-assembled viologen monolayer on Au electrode surface has been investigated with QCM which has been known as nano-gram order mass detector. A monolayer of viologen is immobilized on the gold electrode surface and the normal potentials corresponding to the to the successive one-electron transfer processes of the viologen actives are two peaks in 0.1mol/l phosphate buffer solution respectively. These result suggest that the viologen SAMs are stable and well-behaved monolayers.

  • PDF

Composite Dependency-reflecting Model for Core Promoter Recognition in Vertebrate Genomic DNA Sequences

  • Kim, Ki-Bong;Park, Seon-Hee
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.648-656
    • /
    • 2004
  • This paper deals with the development of a predictive probabilistic model, a composite dependency-reflecting model (CDRM), which was designed to detect core promoter regions and transcription start sites (TSS) in vertebrate genomic DNA sequences, an issue of some importance for genome annotation. The model actually represents a combination of first-, second-, third- and much higher order or long-range dependencies obtained using the expanded maximal dependency decomposition (EMDD) procedure, which iteratively decomposes data sets into subsets on the basis of dependency degree and patterns inherent in the target promoter region to be modeled. In addition, decomposed subsets are modeled by using a first-order Markov model, allowing the predictive model to reflect dependency between adjacent positions explicitly. In this way, the CDRM allows for potentially complex dependencies between positions in the core promoter region. Such complex dependencies may be closely related to the biological and structural contexts since promoter elements are present in various combinations separated by various distances in the sequence. Thus, CDRM may be appropriate for recognizing core promoter regions and TSSs in vertebrate genomic contig. To demonstrate the effectiveness of our algorithm, we tested it using standardized data and real core promoters, and compared it with some current representative promoter-finding algorithms. The developed algorithm showed better accuracy in terms of specificity and sensitivity than the promoter-finding ones used in performance comparison.

Effects of Catalysts on the Adhesive Properties for Flip Chip Bonding (플립칩 본딩용 접착제 특성에 미치는 촉매제의 영향)

  • Min, Kyung-Eun;Lee, Jun-Sik;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.681-685
    • /
    • 2010
  • The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.

A Study on the Time-Dependent Deformation Behaviors of PMMA in Nanoindentation Process for Hyperfine Pit Structure Fabrication (극미세 점 구조체 제작을 위한 나노압입 공정에서 PMMA의 시간의존적 변형거동에 관한 연구)

  • Kim Hyun-Il;Kang Chung-Gil;Youn Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.62-70
    • /
    • 2005
  • The nanoindenter and AFM have been used for nanofabrication, such as nanolithography, nanowriting, and nanopatterning, as well as measurement of mechanical properties and surface topology. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is very important to make indents of desired morphology (shape, size and depth). Indents of different shapes can be obtained by using indenters of different geometries such as a cube comer and conical and spherical tips. The depth and size of indents can be controlled by making indentations at different indentation loads. However, in case of viscoplastic viscoelastic materials such as polymethylmethacrylate (PMMA) the time dependent deformation (TDD) should also be considered. In this study, the effect of process parameters such as loading rate and hold-time at peak load on the indent morphology (maximum penetration depth, elastic recovery, transient creep recovery, residual depth pile-up height) of PMMA were studied for hyperfine pattern fabrication.

TiO2 Nanotubes Fabricated by Atomic Layer Deposition for Solar Cells

  • Jung, Mi-Hee;Kang, Man-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.161-161
    • /
    • 2011
  • Titanium (IV) dioxide (TiO2) is one of the most attractive d-block transition metal functional oxides. Many applications of TiO2 such as dye-sensitized solar cells and photocatalyst have been widely investigated. To utilize solar energy efficiently, TiO2 should be well-aligned with a high surface area and promote the charge separation as well as electron transport. Herein, the TiO2 nanotubes were successfully fabricated by a template-directed method. The electrospun PEO(Polyethylene oxide, Molecular weight, 400k)fibers were used as a soft template for coating with titanium dioxide using an atomic layer deposition (ALD) technique. The deposition was conducted onto a template at 50$^{\circ}C$ by using titaniumisopropoxide [Ti(OCH(CH3)2)4; TTIP] as precursors of TiO2. While the as-deposited TiO2 layers onto PEO fibers were completely amorphous with atomic layer deposition, the TiO2 layers after calcination at 500$^{\circ}C$ for 1 h were properly converted into polycrystalline nanostructured hallow TiO2 nanotube. The TiO2 nanotube with high surface area can be easily handled and reclaimed for use in future applications related to solar cell fabrications.

  • PDF

Hyperthermal Collision-induced Dissociation of Bromotoluene Radical Cations at Self-Assembled Monolayer Surfaces

  • Jo, Sung-Chan;Augusti, Rodinei;Cooks, R. Graham
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • Hyperthermal ion/surface collisions of bromotoluene radical cations were studied using perfluorinated (F-SAM) and hydroxyl-terminated (OH-SAM) self-assembled monolayer surfaces in a tandem mass spectrometer with BEEQ geometry. The isomers were differentiated by ion abundance ratios taken from surface-induced dissociation (SID). The dissociation rate followed the order of ortho > meta > para isomers. The peak abundance ratio of m/z 51 to m/z 65 showed the best result to discern the isomers. A dissociation channel leading to tolylium ion was suggested to be responsible for the pronounced isomeric differences. The capability of SID to provide high-energy activation with narrow internal energy distribution may have channeled the reaction into the specific dissociation pathway, also facilitating small differences in reaction rates to be effective in the spectral time window of this experiment. All of the molecular ions experiencing reactive collisions with the F-SAM surface undergo transhalogenation, in which a fluorine atom on the surface replaces the bromine in the incoming ions. This reactive collision was dependent on the laboratory collision energy occurring in ca. 40.75 eV range.

A Study on the Electrical Characteristics of Pentacene Organic Thin Film Transistor using Organic Gate Insulator (유기물 게이트 절연체를 사용한 pentacene 유기 박막 트랜지스터의 전기적 특성에 관한 연구)

  • Kim, Yun-Myoung;Kim, Ok-Byoung;Kim, Jung-Soo;Kim, Young-Kwan;Zyung, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.446-448
    • /
    • 2000
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, pentacene thin films and electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. For the gate dielectric layer, OPTMER PC403 photo acryl (JSR Coporation.) was spin-coated and cured at $220^{\circ}C$. Electrical characteristics of the devices were investigated, where the channel length and width was $50{\mu}m$ and 5 mm. It was found that field effect mobility was $0.039\;cm^2V^{-1}s^{-1}$, threshold voltage was -7 V, and on/off current ratio was $10^6$.

  • PDF

Ferromagnic Transitition Temperature of Diluted Magnetic III-V Based Semiconductor (III-V 화합물 자성 반도체의 강자성체 천이온도에 관한 연구)

  • Lee, Hwa-Yong;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.143-147
    • /
    • 2001
  • Ferromagnetism in manganese compound semiconductors open prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds. Also it addresses a question about the origin of the magnetic interactions that lead to a Curie temperature(Tc) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally suggested for transition metals in 1950, can explain Tc of $Ga_{1-x}Mn_x$ As and that of its IT-VI counterpart $Zn_{1-x}Mn_x$ Te and is used to predict materials with Tc exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin. In this article, we present not only the experimental result but calculated Curie temperature by RKKY interaction. The problem in making III-V semiconductor has been the low solubility of magnetic elements, such as manganese, in the compound, since the magnetic effects are roughly proportional to the concentration of the magnetic ions. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium MBE{molecular beam epitaxy) growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 K for a small manganese concentration.

  • PDF

Surface Order of Hexagonal Columnar Mesophases Induced by Molecular Assembly

  • Kim, Sang-Ouk;Ko, Young-Koan;Yoon, Dong-Ki;Kang, Sang-Yoon;Jung, Hee-Tae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.32-36
    • /
    • 2001
  • We investigate the surface order, defects and morphology of hexagonal columnar mesophases, Having a crown ether at one end which forms the center of the column and three fluorinated tails at the other, The orientation of the columns was successfully controlled by surface anchoring: Columns were aligned perpendicularly to an evaporated carbon surface, and the planar alignment do asymmetric compounds was induced by a water surface. TEM images show that there is a high degree of perfection in the packing do the cylinders. The hexagonal columnar mesophase (F(sub)h) was confirmed by direct images and the corresponding electron diffractions, where ordered cylindrical moieties are packed on a hexagonal lattice. The column of 12F8-ABG-15C5 was much straighter, compared with that of 12F8-AG-B15C5, resulting from the degrees of regular stacking. Elementary edge dislocation, grain boundary and +1/2 disclination have been observed, although the defects are generally rare.