• Title/Summary/Keyword: Molecular dynamic

Search Result 488, Processing Time 0.036 seconds

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers

  • Im, Seung-Soon;Kim, Sung-Joong
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.

Multiple Sequence Aligmnent Genetic Algorithm (진화 알고리즘을 사용한 복수 염기서열 정렬)

  • Kim, Jin;Song, Min-Dong;Choi, Hong-Sik;Chang, Yeon-Ah
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 1999
  • Multiple Sequence Alignment of DNA and protem sequences is a imnport'mt tool in the study of molecular evolution, gene regulation. and prolein suucture-function relationships. Progressive pairwise alignment method generates multiple sequence alignment fast but not necessarily with optimal costs. Dynamic programming generates multiple sequence alig~~menl with optimal costs in most cases but long execution time. In this paper. we suggest genetlc algorithm lo improve the multiple sequence alignment generated from the cnlent methods, describe the design of the genetic algorithm, and compare the multiple sequence alignments from 0111 method and current methods.

  • PDF

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

ESTIMATION OF FATIGUE LIFE BY LETHARGY COEFFICIENT USING MOLECULAR DYNAMIC SIMULATION

  • Song, J.H.;Noh, H.G.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.215-219
    • /
    • 2004
  • A vehicle structure needs to be more precisely analyzed because of complexities and varieties. Structural fatigue which is generated by fluctuations of stresses during the service life of a mechanical system is the primary concern in the structural design for safety. A fatigue life is difficult to obtain in structural components during the service life of mechanical systems since the fluctuating stress contributes to fatigue. This study introduces new procedures to measure the lethargy coefficient and to predict the fatigue life of a mechanical structure by using molecular dynamic simulation. A lethargy coefficient is the total defect-estimating coefficient, which was obtained by using the results of a simple tensile test in this study. With this lethargy coefficient, fatigue life was estimated. The proposed method will be useful in predicting the fatigue life of a structurally-modified vehicle design. The effectiveness of the proposed method using lethargy coefficient measurement to predict the fatigue life of a structure was examined by applying this method to predict the fatigue life of SS41 steel, used extensively as material of vehicle structures. Two types of specimen such as pre-cracked plate and simple plate is discussed. equation of fatigue life using the lethargy coefficient and failure time, both obtained from a simple tensile test, will be useful in engineering. This measurement and prediction technology will be extended for use in analysis of any geometric shapes of modified automotive structures.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in a Canonical Ensemble

  • Kim, Ja-Hun;Lee, Song-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.441-446
    • /
    • 2002
  • We have presented the results of thermodynamic, structural and dynamic properties of liquid benzene, toluene, and p-xylene in canonical (NVT) ensemble at 293.15 K by molecular dynamics (MD) simulations. The molecular model adopted for these molecules is a combination of the rigid body treatment for the benzene ring and an atomistically detailed model for the methyl hydrogen atoms. The calculated pressures are too low in the NVT ensemble MD simulations. The various thermodynamic properties reflect that the intermolecular interactions become stronger as the number of methyl group attached into the benzene ring increases. The pronounced nearest neighbor peak in the center of mass g(r) of liquid benzene at 293.15 K, provides the interpretation that nearest neighbors tend to be perpendicular. Two self-diffusion coefficients of liquid benzene at 293.15 K calculated from MSD and VAC function are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene also agree well with the experimental ones for toluene in benzene and for toluene in cyclohexane.

Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents

  • Alkhateb, H.;Al-Ostaz, A.;Cheng, A.H.D.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.316-324
    • /
    • 2010
  • The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young's modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.

Activated Physical Properties at Air-Polymer Interface

  • Kajiyama, Tisato
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning vis-coelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, E', and loss tangent, $tan\delta$, at a PS film surface with number-average molecular weights, $M_n$, smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when the $M_n$ is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature, $T_g$, at the surface was found to be markedly lower than the bulk $T_g$, and this discrepancy between the surface and bulk became larger with decreasing $M_n$. Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

Motional Properties in the Structure of GlcNAc(β1,3)Gal(β)OMe Studied by NMR Spectroscopy and Molecular Modeling

  • 심규창;이상원;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.415-424
    • /
    • 1997
  • Conformational flexibilities of the GlcNAc(β1,3)Gal(β)OMe are investigated through NMR spectroscopy and molecular modeling. Adiabatic energy map generated with a dielectric constant of 50 contains three local minima. All of the molecular dynamics simulations on three local minimum energy structures show fluctuations between two low energy structures, N2 at φ=80° and ψ=60° and N3 at φ=60° and ψ=-40°. We have presented adequate evidences to state that GlcNAc(β1,3)Gal(β)OMe exists in two conformationally discrete forms. Two state model of N2 and N3 conformers with a population ratio of 40:60 is used to calculate the effective cross relaxation rate and reproduces the experimental NOEs very well. Molecular dynamics simulation in conjunction with two state model proves successfully the dynamic equilibrium existed in GlcNAc(β1,3)Gal(β)OMe and can be considered as a powerful method to analyze the motional properties in the structure of carbohydrate. This observation also cautions against the indiscriminate use of a rigid model to analyze NMR data.