• Title/Summary/Keyword: Molecular dynamic

Search Result 488, Processing Time 0.02 seconds

Crystallization and Molecular Relaxation of Poly(Ethylene Terephthalate) Annealed in Supercritical Carbon Dioxide

  • Jung, Yong-Chae;Cho, Jae-Whan
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.284-288
    • /
    • 2005
  • Poly(ethylene terephthalate) was annealed at different temperature and pressure of supercritical carbon dioxide $(CO_2)$ using samples quenched from the melt. Crystallization and molecular relaxation behavior due to $CO_2-annealing$ of samples were investigated using differential scanning calorimetric and dynamic mechanical measurements. The glass transition and crystallization temperatures significantly decreased with increasing temperature and pressure of $CO_2$. The dynamic mechanical measurement of samples annealed at $150^{\circ}C$ in supercritical $CO_2$ showed three relaxation peaks, corresponding to existence of different amorphous regimes such as rigid, intermediate, and mobile domains. As a result, the mobile chains were likely to facilitate crystallization in supercritical state. It also led to the decreased modulus of $CO_2-annealed$ samples with increasing pressure.

Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect

  • Lee Young Seek;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1982
  • Dynamic and equilibrium structures of a polymer chain immersed in solvent molecules have been investigated by a molecular dynamic method. The calculation employs the Lennard-Jones potential function to represent the interactions between two solvent molecules (SS) and between a constituent particle (monomer unit) of the polymer chain and a solvent molecule (CS) as well as between two non-nearest neighbor constituent particles of the polymer chain (CC), while the chemical bond for nearest neighbor constituent particles was chosen to follow a harmonic oscillator potential law. The correlation function for the SS, CS and CC pairs, the end-to-end distance square and the radius of gyration square were calculated by varying the chain length (= 5, 10, 15, 20). The computed end-to-end distance square and the radius of gyration square were found to be in a fairly good agreement with the corresponding results from the random-flight model. Unlike earlier works, the present simulation rsesult shows that the autocorrelation function of radius of gyration square decays slower than that of the end-to-end distance square.

Molecular Dynamics Simulation of Liquid Alkanes. Ⅱ. Dynamic Properties of Normal Alkanes : n- Butane to n- Heptadecane

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.478-484
    • /
    • 1997
  • In a recent paper[Bull. Kor. Chem. Soc. 17, 735 (1996)] we reported results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the dynamic properties of liquid n-alkanes using the same models. The agreement of two self-diffusion coefficients of liquid n-alkanes calculated from the mean square displacements (MSD) via the Einstein equation and the velocity auto-correlation (VAC) functions via the Green-Kubo relation is excellent. The viscosities of n-butane to n-nonane calculated from the stress auto-correlation (SAC) functions and the thermal conductivities of n-pentane to n-decane calculated from the heat-flux auto-correlation (HFAC) functions via the Green-Kubo relations are smaller than the experimental values by approximately a factor of 2 and 4, respectively.

Dynamic Behaviors of Redox Mediators within the Hydrophobic Layers as an Important Factor for Effective Microbial Fuel Cell Operation

  • Choi, Young-Jin;Kim, Nam-Joon;Kim, Sung-Hyun;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.437-440
    • /
    • 2003
  • In a mediator-aided microbial fuel cell, the choice of a proper mediator is one of the most important factors for the development of a better fuel cell system as it transfers electrons from bacteria to the electrode. The electrochemical behaviors within the lipid layer of two representative mediators, thionin and safranine O both of which exhibit reversible electron transfer reactions, were compared with the fuel cell efficiency. Thionin was found to be much more effective than safranine O though it has lower negative formal potential. Cyclic voltammetric and fluorescence spectroscopic analyses indicated that both mediators easily penetrated the lipid layer to pick up the electrons produced inside bacteria. While thionin could pass through the lipid layer, the gradual accumulation of safranine O was observed within the layer. This restricted dynamic behavior of safranine O led to the poor fuel cell operation despite its good negative formal potential.

Preparation and Properties of UV-Curable Polyurethane Acrylates(I) -Effect of Molecular Weights of Polyol and Diol with Low Molecular Weight into Polymer Chain- (UV-경화 폴리우레탄 아크릴레이트의 제조와 특성(I) -폴리올의 분자량과 저분자량 디올의 도입의 영향-)

  • 최준영;이동진;김한도
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • Urethane-acrylate propelymers for secondary coating of optical fiber and high - performance material were prepared from the 4,4'-diphenylmethane diisocyanate(MDI), poly(tetramethylene oxide)glycol(PTMG, Mw 650 or 1000), 1,6-hexanediol(HD), 2-hydroxyethyl acrylate(HEA), and dibutyltin dilaurate as a catalyst. UV-Curable polyurethane acrylates were formulated from the urethane-acrylate prepolymers, three types of reactive diluents(DTs) having mono-, di-, and trifunctional-phenoxyethyl acrylate(PEA), hexanediol diacrylate(HDDA), and trimethylolpropane triacrylate(TMPTA), and 1-hydtoxycyclohexyl phenyl ketone(Irgacure 184) as a photoinitiator. The UV-cured films of polyurethane acrylates were obtained by curing using a medium-pressure mercury lamp(U W/cm, $\lambda_{max}=365\;nm)$. In this work, the effects of molecular weights of polyol and diol with low molecular weight into polymer chain on mechanical and dynamic mechanical properties of UV-cured polyurethane acrylates were studied. The structure and properties of the films obtained from the UV photopolymerization of urethane-acrylate prepolymer were investigated by FT-IR spectroscopy, dynamic mechanical measurement, tensile testing, and X-ray diffractometry.

  • PDF

Dynamic Contrast Enhanced MRI and Intravoxel Incoherent Motion to Identify Molecular Subtypes of Breast Cancer with Different Vascular Normalization Gene Expression

  • Wan-Chen Tsai;Kai-Ming Chang;Kuo-Jang Kao
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1021-1033
    • /
    • 2021
  • Objective: To assess the expression of vascular normalization genes in different molecular subtypes of breast cancer and to determine whether molecular subtypes with a higher vascular normalization gene expression can be identified using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI). Materials and Methods: This prospective study evaluated 306 female (mean age ± standard deviation, 50 ± 10 years), recruited between January 2014 and August 2017, who had de novo breast cancer larger than 1 cm in diameter (308 tumors). DCE MRI followed by IVIM DWI studies using 11 different b-values (0 to 1200 s/mm2) were performed on a 1.5T MRI system. The Tofts model and segmented biexponential IVIM analysis were used. For each tumor, the molecular subtype (according to six [I-VI] subtypes and PAM50 subtypes), expression profile of genes for vascular normalization, pericytes, and normal vascular signatures were determined using freshly frozen tissue. Statistical associations between imaging parameters and molecular subtypes were examined using logistic regression or linear regression with a significance level of p = 0.05. Results: Breast cancer subtypes III and VI and PAM50 subtypes luminal A and normal-like exhibited a higher expression of genes for vascular normalization, pericyte markers, and normal vessel function signature (p < 0.001 for all) compared to other subtypes. Subtypes III and VI and PAM50 subtypes luminal A and normal-like, versus the remaining subtypes, showed significant associations with Ktrans, kep, vp, and IAUGCBN90 on DEC MRI, with relatively smaller values in the former. The subtype grouping was significantly associated with D, with relatively less restricted diffusion in subtypes III and VI and PAM50 subtypes luminal A and normal-like. Conclusion: DCE MRI and IVIM parameters may identify molecular subtypes of breast cancers with a different vascular normalization gene expression.

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties (침투성 구형 모델에 관한 분자 전산 연구: II. 충돌 특성)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.513-519
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.

A Study on the Characteristics of Molecular Motions on a Liquid-Vapor Interface by a Molecular Dynamics Method (분자동역학법에 의한 기액계면 분자의 운동특성에 관한 고찰)

  • Kim Hye-Min;Park Kweon-Ha;Choi Hyun-Kue;Choi Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.34-41
    • /
    • 2005
  • An experimental study of molecular motions on a liquid-vapor interface is limited due to micro-scale characteristics of a system with an angstrom or a nanometer size Therefore, in recent, many studies for micro-scale systems have been conducted by a computer simulation because it is free from experimental limitations. In this study, through the molecular dynamic (MD) method. molecular behavior was clarified on a liquid-vapor interface and a criterion to distinguish between liquid and vapor was suggested by a potential energy and the number of neighboring molecules. At an interface. the potential energy of a molecule was increased but the number of neighboring molecules was decreased when the molecule moved into a vapor region from a liquid region, and vice versa.

Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

  • Kim, Dong-Hwan;Sung, Sibum
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.841-850
    • /
    • 2014
  • Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana.