• Title/Summary/Keyword: Molecular dynamic

Search Result 488, Processing Time 0.021 seconds

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

Design and Simulation Study on Three-terminal Graphene-based NEMS Switching Device (그래핀 기반 3단자 NEMS 스위칭 소자 설계 및 동작 시뮬레이션 연구)

  • Kwon, Oh-Kuen;Kang, Jeong Won;Lee, Gyoo-Yeong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.939-946
    • /
    • 2018
  • In this work, we present simple schematics for a three-terminal graphene-based nanoelectromechanical switch with the vertical electrode, and we investigated their operational dynamics via classical molecular dynamics simulations. The main structure is both the vertical pin electrode grown in the center of the square hole and the graphene covering on the hole. The potential difference between the bottom gate of the hole and the graphene of the top cover is applied to deflect the graphene. By performing classical molecular dynamic simulations, we investigate the nanoelectromechanical properties of a three-terminal graphene-based nanoelectromechanical switch with vertical pin electrode, which can be switched by the externally applied force. The elastostatic energy of the deflected graphene is also very important factor to analyze the three-terminal graphene-based nanoelectromechanical switch. This simulation work explicitly demonstrated that such devices are applicable to nanoscale sensors and quantum computing, as well as ultra-fast-response switching devices.

Identification of Selective STAT1 Inhibitors by Computational Approach

  • Veena Jaganivasan;Dona Samuel Karen;Bavya Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.16 no.3
    • /
    • pp.81-95
    • /
    • 2023
  • Colorectal cancer is one of the most common types of cancer worldwide, ranking third after lung and breast cancer in terms of global prevalence. With an expected 1.93 million new cases and 935,000 deaths in 2020, it is more prevalent in males than in women. Evidence has shown that during the later stages of colon cancer, STAT1 promotes tumor progression by promoting cell survival and resistance to chemotherapy. Recent studies have shown that inhibiting STAT1 pathway leads to a reduction in tumor cell proliferation and growth, and can also promote apoptosis in colon cancer cells. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened FDA database against STAT1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top 10 compounds to be more specific with STAT1 comparing the affinity with STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. The drugs that showed higher affinity were subjected to Conceptual - Density functional theory. Besides, the Molecular dynamic simulation was also carried out for the selected leads. We also validated in-vitro against colon cancer cell lines. The results showed mainly Acetyldigitoxin has shown better binding to the target. From this study, we can predict that the drug Acetyldigitoxin has shown noticeable inhibitory efficiency against STAT1, which in turn can also lead to the reduction of tumor cell growth in colon cancer.

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.

Stokesian Dynamic Simulation of Pigment Flow in Ink Jet Printer Nozzle (잉크제트 프린터를 이용한 섬유인쇄 시 노즐 관에서의 입자 흐름)

  • Kim, Young Dae;Lee, Moo Sung;Choi, Chang Nam;Lee, Ki Young
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 2001
  • Textile printing prints around twenty bilion linear meters of textile each year. Rotary and flat bed screen printing requires pre and post treatments, leading to the loss of dyes and the environmental problems due to effluents. Digital ink jet printing can offer a solution to the existing problems, especially the environmental problems, in addition to its flexibility. Pigments are used as a dispersion inks in the digital inkjet textile printing. Molecular dynamic simulation like Stokesian dynamic simulation was employed to simulate the behavior of pigments and velocity distribution under the pressure driven flow in the printer nozzle. The simulation shows that the particle distribution in the flow are uniform if particle volume fraction is low, the ratio of nozzle and particle diameter is large, and the dimensionless average suspension velocity is low.

  • PDF

Effects os Stoichiometric Ratio on Dynamic Mechanical Behavior for an Epoxy/Anhydride System (에폭시/산무수물계에서 동역학적 거동에 미치는 화학양론비의 효과)

  • Kim, Deuk-Su;Lee, Jong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1089-1096
    • /
    • 1997
  • 본 연구에서는 에폭시/산무수물계에 화학양론비(r=산무수물/에폭시)를 0.5, 0.7,0.9,1.1로 변화시켜 서로 다른 두종류의 경화촉진제 1-cyanoethy1-2-ethy1-4-methy1 imidazole(2E4MZ-CN)과 N,N-dimethy1 benzy1 amine(BDMZ)을 첨가한 시료에 대한 경화거동과 경화 후 물성을 관찰하였다. 이 시료의 등온 경화거동은 동역학 측정기(dynamic mechanical analyzer, DMA)와 시차주사 열량분석기(differential scanning calorimeter, DSC)를 이용하여 조사하였다. DMA로부터 구해진 결과를 보면 경화시 상대저장강성을 (relative storage rigidity, RSR)과 상대손실강성율(relative loss rigidity, RSR)과 상대손실강성율(relative loss rigidity, RLR)의 변화가 r값과 경화촉진제의 종류에 영향을 받았다. 그리고 DSC결과는 r값이 감소함에 따라 경화가 촉진되는 것으로 나타났다. 경화물의 성질을 조사하기 위하여 사용된 DMA로부터 얻어진 유리전이온도(glass transition temperature, T$_{g}$)와 가교결합간의 평균분자량(average molecular weigh between crosslinks, M$_{c}$은 사용한 두 경화촉진제에 대하여 r값의 영향이 다르게 나타났다. BDMA의 경우는 T$_{g}$가 1:1화학양론비인 r=0.9에서 최고치를 보였으나, 2E4MZ-CN은 r이 감소함에 따라 계속 증가하는 양상을 보였다. 이와 같은 경향은 2E4MZ-CN을 경화촉진제로 사용하였을 때 에폭시가 과량으로 될수록 잔류 에폭시기들간의 에케르반응이 추가적으로 일어나 M$_{c}$가 감소하기 때문이다.

  • PDF

Development of Additive to Modify the SDAR (Solvent DeAsphalting Residue) and Laboratory Performance Evaluation of Asphalt Mixture with Modified SDAR (고품위화 정제공정 부산물(SDAR) 활용을 위한 첨가제 개발 및 이를 이용한 아스팔트 혼합물의 실내 공용성능 평가)

  • Baek, Cheolmin;Yang, Sung Lin;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS : The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheel-tracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the anti-stripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS : The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

A study on Electronic properties of finite length effect in Carbon nanotubes for Carbon Nanoscale device : Tight binding theory (나노디바이스를 위한 탄소 나노튜브의 유한길이에 따른 전기적 특성 연구 : Tight binding 이론)

  • 문원하;강진철;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.103-106
    • /
    • 2000
  • The electronic properties of carbon nanotube are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in carbon nanotube for cabon nanoscale device is presented. To calculate the electronic properties of carbon nanotube, Empirical potential method (Brenner' hydrocarbon potential) for carbon and Tight binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6, 6) armchair carbon nanotube have the ranges between 0.3 eV and 2.5 eV. Also, our results were compared with the results of the other computational techniques. As that result, our results are very well united.

  • PDF

Characterization of Linear Polymer-Dendrimer Block Copolymer/Plasmid DNA Complexes: Formation of Core-shell Type Nanoparticles with DNA and Application to Gene Delivery in Vitro

  • Choi, Joon-Sig;Choi, Young-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1025-1030
    • /
    • 2004
  • A hybrid linear polymer-dendrimer block copolymer, poly(ethylene glycol)-block-poly(L-lysine) dendrimer, was synthesized and introduced to form polyionic complexes with DNA. The copolymer formed core-shell type nanoparticles with plasmid DNA. From dynamic light scattering experiments, the mean diameter of the polyplexes was observed to be 154.4 nm. The complex showed much increased water solubility compared to poly(L-lysine). The plasmid DNA in polyplexes was efficiently protected from the enzymatic digestion of DNase I. The cytotoxicity and transfection efficiency for 293 cells was measured in comparison with poly(Llysine).