• Title/Summary/Keyword: Molecular diversity

Search Result 902, Processing Time 0.026 seconds

RNA-Protein Interactions and Protein-Protein Interactions during Regulation of Eukaryotic Gene Expression

  • Varani, Luca;Ramos, Andres;Cole, Pual T.;Neuhaus, David;Varani, Gabriele
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.152-157
    • /
    • 1998
  • The diversity of RNA functions ranges from storage and propagation of genetic information to enzymatic activity during RNA processing and protein synthesis. This diversity of functions requires an equally diverse arrays of structures, and, very often, the formation of functional RNA-protein complexes. Recognition of specific RNA signals by RNA-binding proteins is central to all aspects of post-transcriptional regulation of gene expression. We will describe how NMR is being used to understand at the atomic level how these important biological processes occur.

  • PDF

Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches

  • Komarek, Jiri
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.349-375
    • /
    • 2006
  • The application of modern ecological, ultrastructural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms. It has led to major advances in cyanobacterial taxonomy and criteria for their phylogenetic classification. Molecular data provide basic criteria for cyanobacterial taxonomy; however, a correct phylogenetic system cannot be constructed without combining genetic data with knowledge from the previous 150 years research of cyanobacterial diversity. Thus, studies of morphological variation in nature, and modern morphological, ultrastructural, ecophysiological and biochemical characters need to be combined in a “polyphasic” approach. Taxonomic concepts for generic and infrageneric ranks are re-evaluated in light of combined phenotypic and molecular criteria. Despite their usefulness in experimental studies, the limitations of using strains from culture collections for systematic and nomenclatural purposes is highlighted. The need for a continual revision of strain identification and proper nomenclatural practice associated with either the bacteriological or botanical codes is emphasized. Recent advances in taxonomy are highlighted in the context of prospects for understanding cyanobacterial diversity from natural habitats, and the evolutionary and adaptational processes that cyanobacteria undergo.

Estimation of Genetic Variation of Korean Isolates of Phytophthora capsici by Using Molecular Markers

  • Chee, Hee-Youn;Jee, Hyeong-Jin
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Genetic diversity of 21 Korean Phytophthora capsici isolates was analyzed by using several molecular markers such as random amplified polymorphic DNA(RAPD), M-13, microsatellite and random amplified microsatellite sequences(RAMS). The overall average similarity coefficient among the isolates was 86% based on the combined data obtained by the molecular markers. No molecular markers were found to be associated with hosts or geographic regions. In addition to RAPD, analysis based on repeated sequences such as $(GTG)_5$, M-13 and RAMS could be used to assess population structure of P. capsici.

  • PDF

Genetic Diversity of Orobanche cumana Populations in Serbia

  • Ivanovic, Zarko;Marisavljevic, Dragana;Marinkovic, Radovan;Mitrovic, Petar;Blagojevic, Jovana;Nikolic, Ivan;Pavlovic, Danijela
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.512-520
    • /
    • 2021
  • In this study, we report genetic characterization of Orobanche cumana, the causal agent of sunflower wilting in Serbia. The genetic diversity of this parasitic plant in Serbia was not studied before. Random amplified polymorphic DNA (RAPD) markers and partial rbcL gene sequences analysis were used to characterize the O. cumana populations at the molecular level. While phylogenetic analyses of RAPD-PCR amplicons were performed using unweighted pair-group Method analyses, rbcL gene sequences were analyzed using neigbor joining method and minimum spanning tree. Molecular analyses of RAPD-PCR analysis revealed high genetic diversity of O. cumana populations which indicated high adaptive potential of this parasitic weed in Serbia. Further analyses of rbcL gene using minimum spanning tree revealed clear differences among diverse sections of Orobanche genus. Although this molecular marker lacked the resolution to display intrapopulation diversity it could be a useful tool for understanding the evolution of this parasitic plant. Our results suggested that O. cumana has great genetic potential which can lead to differentiation of more virulent races which is important for determining crop breeding strategies for their control.

Analysis of Genetic Diversity of the Thai Swamp Buffalo (Bubalus bubalis) Using Cattle Microsatellite DNA Markers

  • Triwitayakorn, K.;Moolmuang, B.;Sraphet, S.;Panyim, S.;Na-Chiangmai, A.;Smith, Duncan R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.617-621
    • /
    • 2006
  • Recently the numbers of the Thai swamp buffalo (Bubalus bubalis), a native species of Thailand, have been rapidly declining, leading to a requirement for conservation programs for this breed. Such studies of the genetic diversity of this species are essential for conservation decisions and to assist the rational implementation of breeding programs. In this study, the genetic diversity of 80 Thai swamp buffalo, randomly selected from seven different research stations of the Thai Department of Livestock Development, were studied using ten cattle microsatellite markers. Polymorphic PCR products were observed at all microsatellite loci, with percentages of polymorphic loci ranging from 80.00 to 100.00%. The population from Payao showed the lowest level of polymorphism. The mean number of alleles per locus was 4.7 with the highest number of alleles being eight (ETH152) and the lowest being three (HAUT27 and ILSTS030). The average unbiased heterozygosity for all seven populations was 0.61 and varied between 0.5314 (Samui) and 0.6798 (Surin). The genetic distance according to NEI's (1972) ranged from 0.0722 to 0.4427. The populations from Surin and Burirum are the closest populations, while populations from Samui and Payao are the most divergent. The information generated by this study will greatly aid in the establishment of effective breeding and conservation programs for the Thai swamp buffalo.

Biochemical Characterization and Genetic Diversity of Pongamia pinnata (L.) Pierre in Eastern India

  • Kumari, Kanchan;Sinha, Amrita;Singh, Sanjay;Divakara, B.N.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.200-210
    • /
    • 2013
  • Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.

Diversity of midgut microbiota in ticks collected from white-tailed deer (Odocoileus virginianus) from northern Mexico

  • Zinnia Judith Molina-Garza;Mariana Cuesy-Leon;Lidia Baylon-Pacheco;Jose Luis Rosales-Encina;Lucio Galaviz-Silva
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.117-130
    • /
    • 2024
  • Ticks host different pathogens as endosymbiont and nonpathogenic microorganisms and play an important role in reproductive fitness and nutrient provision. However, the bacterial microbiomes of white-tailed deer ticks have received minimal attention. This study aimed to examine the bacterial microbiome of ticks collected from Odocoileus virginianus on the Mexico-United States border to assess differences in microbiome diversity in ticks of different species, sexes, and localities. Five different tick species were collected: Rhipicephalus microplus, Dermacentor nitens, Otobius megnini, Amblyomma cajennense, and A. maculatum. The tick microbiomes were analyzed using next-generation sequencing. Among all tick species, the most predominant phylum was Proteobacteria, followed by Actinobacteria and Firmicutes. The ticks from Tamaulipas and Nuevo León presented the highest bacterial species diversity. Acinetobacter johnsonii and A. lwoffii were the common bacterial species in the microbiome of all ticks, Coxiella were present in R. microplus, and Dermacentor nitens also exhibited a Francisella-like endosymbiont. The microbiome of most females in D. nitens was less diverse than that of males, whereas R. microplus occurs in females, suggesting that microbiome diversity is influenced by sex. In the bacterial communities of A. maculatum and O. megnini, Candidatus Midichloria massiliensis, and Candidatus Endoecteinascidia fumentensis were the most predominant endosymbionts. These results constitute the initial report on these bacteria, and this is also the first study to characterize the microbiome of O. megnini.

Mitochondrial DNA variation and phylogeography of native Mongolian goats

  • Ganbold, Onolragchaa;Lee, Seung-Hwan;Paek, Woon Kee;Munkhbayar, Munkhbaatar;Seo, Dongwon;Manjula, Prabuddha;Khujuu, Tamir;Purevee, Erdenetushig;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.902-912
    • /
    • 2020
  • Objective: Mongolia is one of a few countries that supports over 25 million goats, but genetic diversity, demographic history, and the origin of goat populations in Mongolia have not been well studied. This study was conducted to assess the genetic diversity, phylogenetic status and population structure of Mongolian native goats, as well as to discuss their origin together with other foreign breeds from different countries using hypervariable region 1 (HV1) in mtDNA. Methods: In this study, we examined the genetic diversity and phylogenetic status of Mongolian native goat populations using a 452 base-pair long fragment of HVI of mitochondrial DNA from 174 individuals representing 12 populations. In addition, 329 previously published reference sequences from different regions were included in our phylogenetic analyses. Results: Investigated native Mongolian goats displayed relatively high genetic diversities. After sequencing, we found a total of 109 polymorphic sites that defined 137 haplotypes among investigated populations. Of these, haplotype and nucleotide diversities of Mongolian goats were calculated as 0.997±0.001 and 0.0283±0.002, respectively. These haplotypes clearly clustered into four haplogroups (A, B, C, and D), with the predominance of haplogroup A (90.8%). Estimates of pairwise differences (Fst) and the analysis of molecular variance values among goat populations in Mongolia showed low genetic differentiation and weak geographical structure. In addition, Kazakh, Chinese (from Huanghuai and Leizhou), and Arabian (Turkish and Baladi breeds) goats had smaller genetic differentiation compared to Mongolian goats. Conclusion: In summary, we report novel information regarding genetic diversity, population structure, and origin of Mongolian goats. The findings obtained from this study reveal that abundant haplogroups (A to D) occur in goat populations in Mongolia, with high levels of haplotype and nucleotide diversity.

Genetic Diversity and Population Structure of Codium fragile (SURINGAR) HARlOT in Korea Using Allozymes (알로자임을 이용한 청각의 유전적 다양성과 집단구조)

  • Lee Bok-Kyu;Park So-Hye;Heo Youn-Seong;Ju Mu-Teol;Choi Joo-Soo;Huh Man-Kyu
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.213-218
    • /
    • 2006
  • The study of genetic diversity and population structure was carried out in the Codium fragile using allozyme analysis. Although this species has been regarded as a ecologically and economically important source, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of four Korean populations of this species. Of the 15 genetic loci surveyed, nine (60.0%) was polymorphic in at least one population. Genetic diversity was high at the species level ($H_{ES}$=0.144), and, that of the population level was relatively low ($H_{EP}$=0.128). Nearly 87% of the total genetic diversity in C. fragile was apportioned within populations. The predominant asexual reproduction, population fragmentation, low fecundity, geographic isolation and colonization process are proposed as possible factors contributing to low genetic diversity in this species. The indirect estimated of gene flow based on $G_{ST}$ was 1.69. The moderate level of gene flow in C. fragile populations is mainly caused by thallus developed from isolated utricles dispersal via sea current.

Morphological and molecular analysis of indigenous Myanmar mango (Mangifera indica L.) landraces around Kyaukse district

  • Kyaing, May Sandar;Soe, April Nwet Yee;Myint, Moe Moe;Htway, Honey Thet Paing;Yi, Khin Pyone;Phyo, Seinn Sandar May;Hlaing, Nwe Nwe Soe
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • There is vast genetic diversity of Myanmar Mangoes. This study mainly focused on indigenous thirteen different mango landraces cultivated in central area of Myanmar, Kyauk-se District and their fruit characteristics by 18 descriptors together with genetic relationship among them by 12 SSR markers. Based on the morpho-physical characters, a wide variation among accessions was found. Genetic characterization of thirteen mango genotypes resulted in the detection of 302 scorable polymorphic bands with an average of 4.33 alleles per locus and an average polymorphism information content (PIC) of 0.7. All the genotypes were grouped into two major clusters by UPGMA cluster analysis and a genetic similarity was observed in a range of 61 ~ 85%. This study may somehow contribute insights into the identification of regional mango diversity in Myanmar and would be useful for future mango breeding program.