• Title/Summary/Keyword: Molecular Simulation

검색결과 836건 처리시간 0.029초

트라이볼로지 관점에서의 그래핀 분자시뮬레이션 연구동향 (Review on Molecular Simulation of Graphene from a Tribological Perspective)

  • 김현준;정구현
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.55-63
    • /
    • 2020
  • Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.

고분자 자기조립 구조의 전산 모사: 원자 모델로부터 메조 스케일 모델까지 (Simulations of Self-Assembled Structures in Macromolecular Systems: from Atomistic Model to Mesoscopic Model)

  • 허준;조원호
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.453-463
    • /
    • 2006
  • 분자 모델에 의한 전산 모사는 단백질 접힘, 미셀화, 블록공중합체의 규칙구조화 등 다양한 고분자 계의 자기조립 현상을 예측하거나 그 조립 메커니즘을 밝히는 데 특별히 유용한 연구방법이다. 자기조립 현상은 분자 수, 분자 크기 등, 계의 속성에 따라 나노미터 이하의 현상으로부터 마이크론이나 그 이상의 길이 스케일의 현상까지 조립 구조의 길이 스케일이 매우 광범위하기 때문에 다양한 계의 모든 조립 현상을 양자역학적 방법과 같은 궁극의 근본원칙에 의해 모사하는 것은 현실적인 시간 내에서 불가능하다. 이러한 문제들을 해결하기 위해 계를 기술하는 과정에서 필요 이상으로 세밀한 표현을 생략하여 모델을 다른 관점에서 재구성하는 방법이 있는데 재구성된 모델은 그 관점에 따라 크게 '원자 수준'의 모델과 '메조 스케일 수준'의 모델로 분류할 수 있다. 본 총론에서는 고분자 자기조립 현상과 관련하여 이 두 가지 관점에 따른 모델과 모사 방법들에 대해 살펴보고자 한다.

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.

페닐티오우레아 유도체와 카테콜 산화효소와의 상호작용에 대한 분자역학적 모의실험 (The Interaction of Phenylthiourea Derivatives as Catechol Oxidase Inhibitors by Molecular Mechanics Simulation)

  • 박경래
    • 약학회지
    • /
    • 제60권2호
    • /
    • pp.78-84
    • /
    • 2016
  • N-Phenylthiourea derivatives and catechol oxidase receptor complex was studied using molecular mechanics method. The starting structure was adopted from the protein databank and the calculation of energy minimization and molecular dynamics was performed with AMBER package. The molecular dynamics showed that the simulation time span of 20 ns was long enough to observe the interaction profile and stationary ligand-receptor configuration in the complex. The conformation of the ligand was related to the interaction to the receptor and the efficacy was also interpreted in this context.

손상된 핵산의 구조와 분자동력학적 특성 (Conformational and Molecular Dynamical Properties of Damaged DNA)

  • 박경래;드 로스 산토스 카를로스
    • 약학회지
    • /
    • 제54권1호
    • /
    • pp.67-74
    • /
    • 2010
  • Some of the benzopyrene (BP)-DNA adduct are known to build intercalated motif between flanking base pairs in damaged DNA depending on the structural condition. The size of benzopyrene itself is definitely not comparable with any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular dynamics simulation based on the theory of molecular mechanics. The specific consequences about the structural properties of the intercalated structures and benzopyrene motif in minor groove of the double helix are deduced after 5 ns simulation time.

Application of Molecular Simulation Techniques to Estimation of Gas Permeability in Zeolite Membranes

  • Takaba, Hiromitsu;Yamamoto, Atsushi;Nakao, Shin-Ichi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.33-38
    • /
    • 2004
  • Molecular modeling of gas permeation through zeolite membranes with/without intercrystalline region was carried out. Molecular dynamics (MD) and Monte Carlo (MC) simulations were performed to estimate the diffusion coefficient and adsorption parameters respectively, and our proposed combined method of molecular simulation techniques with a permeation theory (CMP) was used to estimate gas permeability. The calculated permeability of gases (Ar, He, Ne, $N_2$, $0_2$, $CH_4$) at 301 K for the single crystal membrane model was about one order of magnitude larger than the experiential values, although the dependence on the molecular weight of the permeating species agreed with experiments. On the other hand, the estimated permeability using the diffusivity and adsorption parameters of the intercrystalline region model was in good agreement with the experiments. The consistency between experiments and the estimated values means the importance of considering the intercrystalline region and the validity of CMP method to predict the performance of zeolite membranes.

  • PDF

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Targeting of integrin αvβ3 with different sequence of RGD peptides: A molecular dynamics simulation study

  • Azadeh Kordzadeh;Hassan Bardania;Esmaeil Behmard;Amin Hadi
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2023
  • Integrin αvβ3 is one of the receptors expressed in cancer cells. RGD peptides have the potential to target integrin αvβ3 (receptor), which can increase drug delivery efficiency. In this study, 55 different RGD dimer motifs were investigated. At first, the binding energy between RGD peptides and the receptor was calculated using molecular docking. Then, three RGD peptides with the strongest binding energy with the receptor were selected, and their dynamic adsorption on the receptor was simulated by molecular dynamics (MD). The obtained results showed that a sequence that has RGD at the beginning and end with tryptophan (TRP) has strong Lennard-Jones (LJ) and electrostatic interactions with Integrin αvβ3 and has changed the conformation of receptor significantly, which analyzed by root mean square deviation (RMSD) and radius of gyration.