• 제목/요약/키워드: Molecular Separation

검색결과 487건 처리시간 0.03초

Process Development for the Enzymatic Hydrolysis of Food Protein: Effects of Pre-treatment and Post-treatments on Degree of Hydrolysis and Other Product Characteristics

  • Chae, Hee-Jeong;In, Man-Jin;Kim, Min-Hong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.35-39
    • /
    • 1998
  • An enzymatic process was developed to produce protein hydrolysater form defatted soya protein. Various unit operations were tried, and the effects of pre- and post-treatments on the product characteristics such as degree of hydroylsis (DH), free amino acid content (%FAA) and average molecular weight (MW) were investigated. The use of acid washes showed no difference in %DH. Increasing pH during pre-cooking gave lower %DH. Alkaline cooking made too much insoluble protein, thus the protein yield was too small. A better hydrolysis with more acceptable taste was obtained when the combination of Neutrase/Alcalase/Flavourzyme was used in place of Alcalase/Flavourzyme combination; Untoasted defatted soya was more effective on the proteolysis than toasted one. The MW of the evaporated and spray dried product was higher than that of undried product, due to precipitation of low-solubility components. When ultrafiltration and the product concentration carried out the product separation by reverse osmosis, the solubility and the taste of the product were improved. The difference between enzyme hydrolysate and acid hydrolysate was significant in free amino acid composition, especially in tyrosine, phenylalanine, glutamine and asparagine.

  • PDF

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

다양한 HPLC Column에서의 IgY(Immunoglobulin Yolk) 분리특성 (Separation Characteristics of IgY (Immunoglobulin Yolk) in Various HPLC Columns)

  • 송성문;김인호
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.659-665
    • /
    • 2012
  • 동물 혈청 중의 IgG (Immunoglobulin G)에 해당되는 난황에 포함된 면역 단백질 IgY (Immunoglobulin Yolk)는 식품 단백질로 장내 면역 물질로 중요하다. IgY를 정제하기 위해 신선란의 노른자에 카리지난이나 아라빅검을 전처리 물질로 사용하였다. 전처리 후 FPLC (Fast Protein Liquid chromatography)의 DEAE (Diethylaminoethyl) Sepharose 칼럼에서 이온교환법에 의해 불순물을 제거하여 IgY를 얻고, GF HPLC (Gel Filtration High Performance Liquid Chromatography)로 IgY의 분자량을 측정하고 표준 IgY와 비교하여 IgY 단백질을 동정하였다. GF HPLC에서 IgY의 다양성을 발견하였고 IgY 단백질 군의 다양성을 IE HPLC (Ion Exchange High Performance Liquid Chromatography)에서 AX, CX, SCX 칼럼을 사용하여 pH, NaCl 농도를 바꾸어 조사하였다. AX를 사용하여 0.5M NaCl, pH=8 조건에서 3개의 IgY 피크를 분리하였고, SCX를 이용했을 때 0.5M NaCl, pH=5 조건에서도 3개의 IgY 피크를 분리할 수 있었다.

케르세틴 분자각인 고정상 추출을 이용한 녹차에서 카페인 및 카테킨 화합물의 분리 (Separation of Caffeine and Catechin Compounds from Green Tea by Quercetin Molecular Imprinted Solid-Phase Extraction)

  • 김은철;노경호
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.165-170
    • /
    • 2007
  • 고정상 추출에 케르세틴 분자각인 고분자를 흡착제로 하여 녹차에서 카페인과 +C, EGC, EGCG와 같은 카테킨 화합물을 추출하였다. Quercetin을 주형분자로, MAA를 단량체로, EGDMA를 가교제로 하고 AIBN을 개시제로 하여 MIP를 합성하였다. 녹차에서 카페인과 카테킨 화합물을 추출하기 위하여 고정상 추출에서의 주입, 세척, 용출용매로 각각 물, 메탄올, 메탄올:아세트산=90:10(vol.%)을 사용하였다. 고성능 액체 크로마토그래피 분석조건은 C18 컬럼(5 μm, 250×4.6 mm, RS-tech 회사), 메탄올/물(40/60, vol.%)을 이동상 조건으로하고 유속은 0.5 ml/min으로 하였다. 분자각인 고정상 추출을 통과함으로써, 카페인과 카테킨 화합물의 분리도는 증가하였다. 또한 케르세틴 분자각인 고분자는 생성된 공극 구조와 유사한 화학적구조식을 가진 +C화합물에 대하여 더 우수한 선택성을 가졌다.

Genetic Variation of High Molecular Weight Glutenin (HMW-Glu) Subunit in Korean Wheat

  • Hong, Byung-Hee;Park, Chul-Soo
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.259-263
    • /
    • 1998
  • High molecular weight glutenin (HMW-Glu) subunit compositions of 73 Korean wheat cultivars and experimental lines were evaluated by using one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This method is suitable for obtaining a good resolution of 1Dx2 and 1Ax2$^*$ without adverse effects on separation of other HMW-Glu subunits. Korean wheats examined in this study could be divided into 15 different groups on the basis of HMW-Glu subunit compositions. From the wheat lines tested, it was identified that there were three alleles at the Glu-Al, five at the Glu-Bl and three at the Glu-D1 loci. The null allele of the Glu-Al was occurred in high frequency (79.4%), while low frequencies for 1Ax1 (12.3%) and 1Ax2$^*$(8.2%) were found. High frequency (75.3%) of the subunit pairs of 1Bx7+1By8 at the Glu-Bl loci compared with other subunits was found. The frequencies of subunits 1Dx2. 2+1Dy12 and 1Dx2+1Dy12 from the Glu-D1 loci were 54. 8% and 37.0%, respectively. However, a few Korean wheat lines (8.2%) carried 1Dx5 + 1Dy10 subunit pair which are responsible for good breadmaking quality. The information of HMW-Glu subunit compositions provide a useful tool to characterize wheat lines, and can be directly used in selection of breeding lines of different end-use properties.

  • PDF

DCA 미셀을 이용한 한외여과에서 카드뮴의 제거특성 (Removal Characteristics of Cadmium in Micellar Enhanced Ultrafiltration Using DCA)

  • 이호원;김승건;강영주
    • 멤브레인
    • /
    • 제13권4호
    • /
    • pp.211-218
    • /
    • 2003
  • 생분해성 음이온 계면활성제인 deoxycholic acid(DCA)의 미셀을 이용한 한외여과에서 카드뮴의 제거 특성을 살펴보았다. 본 연구에서는 교반 한외여과 셀을 사용하였으며, 한외여과 막은 분획분자량(molecular weight cut-off)이 서로 다른 Millipore사의 YM1, YM3, YM10 및 YM30을 사용하였다. DCA와 카드뮴의 혼합용액에서 DCA의 임계미셀농도는 순수 DCA 용액에서 보다 낮아지고, 미셀의 크기는 증가되었다. 카드뮴이온의 제거율은 사용한 막의 분획분자량에 의해서는 거의 영향이 없었으나, 카드뮴이온에 대한 DCA의 몰 비의 증가에 따라서는 급격히 증가하였다. 카드뮴이온에 대한 DCA의 몰 비가 3일 때 카드뮴이온의 제거율은 사용한 막에 관계없이 99.6% 이상이었다. 순수 투과플럭스에 대한 혼합용액의 투과플럭스의 비로 정의한 상대 투과플럭스는 YM3 > YM1 > YM10 > YM30 막의 순서로 감소하였다.

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

광가교 반응에 의한 미세 상 분리된 실리콘 오일을 함유하는 폴리실록산 복합체 필름의 제조 (Preparation of Polysiloxane Composite Films with Microphase-Separated Silicone Oiol by Photocrosslinking)

  • 이정분;김정수;강영구;김동욱;이창진
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.3-8
    • /
    • 2003
  • 말단에 수소화물기가 치환된 폴리실록산과 알릴 메타크릴레이트와의 히드로실릴레이션 반응을 통하여 폴리실록산 메타크릴레이트를 합성하였다. 또한 산 촉매 하에서 옥타메틸사이클로테트라실록산의 개환-부가반응을 통하여 분자량이 증가된 폴리실록산 메타크릴레이트을 합성하였다. 합성된 폴리실록산 메타크릴레이트는 $^1$H- 및 $^{29}$ Si-NMR로 구조를 확인하였다. 폴리실록산 메타크릴레이트는 실리콘 오일과 균일하게 혼합되었으며, 이 용액을 광 가교시켜 액상인 실리콘 오일이 수 백 nm 정도의 크기로 고르게 미세상분리된 폴리실록산 복합체 필름을 제조할 수 있었다. 주사전자현미경(SEM)을 이용한 모폴로지 관찰로부터 실리콘 오일의 함량이 작을수록, 매트릭스 물질인 폴리실록산 메타크릴레이트의 분자량이 낮을수록, 그리고 분산상 물질인 실리콘 오일의 분자량이 낮을수록 대체적으로 분산상의 크기가 작아짐을 확인하였다

Development and validation of LC-MS/MS for bioanalysis of hydroxychloroquine in human whole blood

  • Park, Jung Youl;Song, Hyun Ho;Kwon, Young Ee;Kim, Seo Jin;Jang, Sukil;Joo, Seong Soo
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.130-139
    • /
    • 2018
  • This study aimed to analyze a high-performance liquid chromatography (HPLC) separation using a pentafluorophenyl column of parent drug hydroxychloroquine (HCQ) and its active metabolite, desethylhydroxchloroquine (DHCQ) applying to determine bioequivalence of two different formulations administered to patients. A rapid, simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for bioanalysis of HCQ and its metabolite DHCQ in human whole blood using deuterium derivative $hydroxychloroquine-D_4$ as an internal standard (IS). A triple-quadrupole mass spectrometer was operated using electrospray ionization in multiple reaction monitoring (MRM) mode. Sample preparation involves a two-step precipitation of protein techniques. The removed protein blood samples were chromatographed on a pentafluorophenyl (PFP) column ($50mm{\times}4.6mm$, $2.6{\mu}m$) with a mobile phase (ammonium formate solution containing dilute formic acid) in an isocratic mode at a flow rate of 0.45 mL/min. The standard curves were found to be linear in the range of 2 - 500 ng/mL for HCQ; 2 - 2,000 ng/mL for DHCQ in spite of lacking a highly sensitive MS spectrometry system. Results of intra- and inter-day precision and accuracy were within acceptable limits. A run time of 2.2 min for HCQ and 2.03 min for DHCQ in blood sample facilitated the analysis of more than 300 human whole blood samples per day. Taken together, we concluded that the assay developed herein represents a highly qualified technology for the quantification of HCQ in human whole blood for a parallel design bioequivalence study in a healthy male.

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.