• Title/Summary/Keyword: Molecular Recognition

Search Result 379, Processing Time 0.025 seconds

Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6

  • Kim, Songwon;Lee, Sang Soo;Park, Jun Gyou;Kim, Ji Won;Ju, Seulgi;Choi, Seung Hun;Kim, Subin;Kim, Na Jin;Hong, Semi;Kang, Jin Young;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.575-587
    • /
    • 2022
  • Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metal-free porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.

Mannan-binding lectin of the sea cucumbers Stichopus japonicus has common antigenic determinants with human serum mannan-binding lectin

  • Bulgakov, A.A.;Petrova, I.Yu.;Vakhrusheva, N.M.;Eliseikina, M.G.
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.530-530
    • /
    • 2000
  • The host defense system or immune system of all modern animals has their roots in very ancient organisms. After analyzing literature data concerning properties of invertebrates and vertebrates lectins we suggest that mechanism of mannans recognition may exist in marine invertebrates, as a universal mechanism for homeostasis maintenance and host defense, and mannan-binding lectins family of vertebrates has ancient precursor, as was shown for another S-type lectins family. We carried out the screening of mannan-binding type lectin among different species of echinoderms inhabiting in Piter the Grate Bay, the sea of Japan. As a result, the C-type lectins (SJL-32) specific for high mannose glycans was isolated from the coelomic plasma of the sea cucumbers Stichopus japonicus by ion-exchange chromatography on a DEAE-Toyopearl 650M, affinity chromatography on a mannan-Sepharose 6B and gel filtration on a Sephacryl S-200. SJL-32 is homodimer with molecular mass about 32 kDa on SDS-PAGE under non-reducing conditions. Protein part of the lectin has high conteins Asn, Glu, Ser. Hemagglutination of trypsin-treated O blood group human erythrocytes by SJL-32 was competitively inhibited by high-branched -D-mannan composed of -1,2 and -1,6 linked D-mannopyranose residues. In contrast, a variety of mono-, oligo-, and polysaccharides composed of residues of galactose and fucose showed absence or little inhibitory activities. The lectin activity strong depends on Ca2+ concentration, temperature and pH. Monospecific polyclonal antibodies were obtained to the lectin. As was shown by ELISA assay, antibodies to SJL-32 cross-reacted with human serum mannan-binding lectin. This data allows making conclusion about common antigenic determinants and structural homology of both lectins. In our opinion, SJL-32 belongs to evolutionary high conservative mannan-binding lectins (MBLs) family and takes part in the host defense against pathogenic microorganisms.

  • PDF

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.

Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer

  • Rong Zhang;Lei Li;Huihui Li;Hansong Bai;Yuping Suo;Ju Cui;Yingmei Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.40-51
    • /
    • 2024
  • Background: Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-kB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway. Materials and methods: A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining. Results: KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation. Conclusion: This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.

The Significance of N6-Methyladenosine RNA Methylation in Regulating the Hepatitis B Virus Life Cycle

  • Jae-Su Moon;Wooseong Lee;Yong-Hee Cho;Yonghyo Kim;Geon-Woo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.233-239
    • /
    • 2024
  • N6-methyladenosine (m6A) RNA methylation has recently emerged as a significant co-transcriptional modification involved in regulating various RNA functions. It plays a vital function in numerous biological processes. Enzymes referred to as m6A methyltransferases, such as the methyltransferase-like (METTL) 3-METTL14-Wilms tumor 1 (WT1)-associated protein (WTAP) complex, are responsible for adding m6A modifications, while m6A demethylases, including fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), can remove m6A methylation. The functions of m6A-methylated RNA are regulated through the recognition and interaction of m6A reader proteins. Recent research has shown that m6A methylation takes place at multiple sites within hepatitis B virus (HBV) RNAs, and the location of these modifications can differentially impact the HBV infection. The addition of m6A modifications to HBV RNA can influence its stability and translation, thereby affecting viral replication and pathogenesis. Furthermore, HBV infection can also alter the m6A modification pattern of host RNA, indicating the virus's ability to manipulate host cellular processes, including m6A modification. This manipulation aids in establishing chronic infection, promoting liver disease, and contributing to pathogenesis. A comprehensive understanding of the functional roles of m6A modification during HBV infection is crucial for developing innovative approaches to combat HBV-mediated liver disease. In this review, we explore the functions of m6A modification in HBV replication and its impact on the development of liver disease.

Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface (CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할)

  • Han, Ji-Woong;Lee, Hye-Ja;Kim, Jin-Mi;Choi, Eun-Young;Chung, Hyun-Joo;Lim, Soo-Bin;Choi, Jang-Won;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

Species Diversity of the Dinoflagellate Genus Alexandrium in the Coastal Waters of Korea during Summer 2013 (2013년 하계 국내 연안에서 출현하는 Alexandrium 속 와편모류의 종 다양성)

  • KIM, JAE SEONG;PARK, KYUNG WOO;YOUN, SEOK HYUN;LIM, WEOL AE;YOO, YEONG DU;SEONG, KEYONG AH;YIH, WON HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.4
    • /
    • pp.158-170
    • /
    • 2016
  • We investigated the occurrence of the dinoflagellate genus Alexandrium in the nineteen Korean coastal sites from July to October 2013. Alexandrium-like planktonic cells were microscopically observed only in four out of the 19 sampling sites. From the samples containing Alexandrium-like cells 22 clonal cultures of Alexandrium species were established by single cell or single chain isolation method. Taxonomic identity of the 4 different strains ascertained by the robust analyses of morphological and molecular genetic characteristics were confirmed to be A. catenella, A. affine, A. fraterculus and an unidentified Alexandrium sp. for which strain WEB-Alex-01 was assigned. It was ascertained that in spite of hot summer diverse Alexandrium species attaining up to four were distributed in the study area, in contrast with the long empirical recognition that the emergence of Alexandrium species is restricted to cooler seasons like spring or autumn in Korean coastal waters. Morphology and genetic characteristics of Alexandrium sp. strain WEB-Alex-01 are different from any other previously reported Alexandrium species from Korean seas, which implies that further studies on taxonomic, physiological, ecological and toxicological properties of the newly recorded Alexandrium species are needed.

The Association of Heavy Metal of Blood and Serum in the Alzheimer's Diseases

  • Lee, Ji-Yeon;Kim, Jae-Hoon;Choi, Dal-Woong;Lee, Dong-Woo;Park, Jun-Hyun;Yoon, Hye-Jung;Pyo, Hee-Soo;Kwon, Ho-Jang;Park, Kyung-Su
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • This study has attempted to establish an analysis method through validation against heavy metals in the body (Pb, Cd and Hg) using ICP-MS and Gold amalgamation and find out the relevance between heavy metal and Alzheimer's disease after analyzing the distribution of heavy metal concentration (Pb, Cd and Hg) and correlations between a control group and Alzheimer's disease group. In this study, Pb and Cd levels in the blood and serum were validation using ICP-MS. For analysis of Hg levels in the blood and serum, the gold amalgamation-based 'Direct Mercury Analyzer' has been used. According to an analysis on the heavy metal concentration (Pb, Cd and Hg concentration) in the blood, Cd concentration was high in the Alzheimer's disease group. In the serum, on the contrary, Pb and Hg were high in the Alzheimer's disease group. For analysis of correlations between heavy metal levels in the blood and serum and Alzheimer's disease, t-test has been performed. Even though correlations were observed between the blood lead levels and Alzheimer's disease, they were statistically insignificant because the concentration was higher in a control group. No significance was found in Cd and Hg. In the serum, on the other hand, no statistical significance was found between the heavy metal (Pb, Cd and Hg) and Alzheimer's disease. In this study, no statistical significance was observed between heavy metal and decrease in cognitive intelligence. However, it appears that a further study needs to be performed because the results of the conventional studies were inconsistent.

Characterization of a New Type II Restriction Endonuclease Isolated from streptoverticillium olivoverticillatum (Streptoverticillium olivoverticillatum에서 분리한 새로운 Type II 제한효소 SolI의 특성 연구)

  • Hwang, Hye-Yeon;Yim, Jeong-Bin
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.208-214
    • /
    • 1994
  • We screened many species from a wide variety of bacterial genera for a new type II restriction endonuclease. The purification and characterization of SolI from a soil isolate, Streptoverticillium olivoverticillatum are described here. The enzyme turned out to be an isoschizomer of BamHI. It recognized the hexanucleotide sequence of 5'-G$\downarrow$GATCC-3' and cleaved as in dicated by the arrow, generating a 4 base 5' extension. Unlike its isoschizomer, BamHI, the activity was sensitive to dam methylation within the recognition sequence. Following ammonium sulfate fractionation of the crude extract, heparin-agarose and Affi-gel Blue column chromatography were employed to purify the enzyme. SolI required at least 0.2 mM of $MgCl_2$ for the cleavage to occur. The enzyme exhibited its maximal activity in the absence of NaCl, but was inhibited completely in the presence of 120 mM NaCl. The pH and temperature optima for activity were pH 8.6 and $40^{\circ}C$, respectively. The molecular weight of SolI was estimated to be 43,000 Da by Superose-12 gel filtraion chromatography.

  • PDF