• Title/Summary/Keyword: Molecular Marker

검색결과 1,035건 처리시간 0.028초

Taxonomic status of three taxa of Elsholtzia (E. hallasanensis, E. springia, and E. splendens var. fasciflora) (Lamiaceae) based on molecular data

  • Lee, Chang Shook;Hwang, Kung Ae;Kim, Jin Ok;Suh, Hyoung Min;Lee, Nam Sook
    • 식물분류학회지
    • /
    • 제41권3호
    • /
    • pp.259-266
    • /
    • 2011
  • Elsholtzia hallasanensis, E. springia, and E. splendens var. fasciflora (Lamiaceae) were reported recently as new species or new varieties of E. splendens according to their morphological characteristics. To reappraise the taxonomic status of these additional taxa and to determine the relationships between all Korean Elsholtzia taxa except E. saxatilis, which is distributed in North Korea, molecular studies based on the nrDNA (ITS) and cpDNA (rpl16, and trnH-psbA) sequences of seven taxa of Elsholtzia and one outgroup were carried out. The molecular data support that E. angustifolia and E. minima are distinct species from E. splendens and E. ciliata, respectively, because they have several private marker genes and show monophyly. The molecular data also support that E. splendens has a very close taxonomic relationship with both E. hallasanensis and E. springia. We found that E. splendens var. fasciflora, with multiple inflorescence, was based on several private marker genes and on the monophyly of its trees, suggesting that it can be considered as a variety. Elsholtzia springia, with the same sequences and the same morphological characteristics with E. hallasanensis after transplanting, should be treated as a synonym of E. hallasanensis. Moreover, we consider the taxonomic status of E. hallasanensis as E. splendens var. hallasanensis (Y. Lee) N.S. Lee & C.S. Lee, stat. nov.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region

  • Li, Guisheng;Cui, Yan;Wang, Hongtao;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.326-329
    • /
    • 2017
  • Background: Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. Methods: The mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. Results: An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. Conclusion: An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Different level of tumor necrosis factor-α expression after administration of silk sericin fraction in RAW264.7 cells

  • Kim, Dae-Won;Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제41권1호
    • /
    • pp.1-5
    • /
    • 2020
  • Tumor necrosis factor-α (TNFα) is a representative marker for inflammation. Silk sericin is known as mild TNFα inducer. The purpose of this study was to compare the level of TNFα among different fractions of silk sericin. Silk sericin was extracted from cocoon and separated it by molecular weight. Each fraction was applied to RAW264.7 cells. The level of TNFα was evaluated by western blot and ELISA assay. In results, the level of TNFα was increased as time-dependent manner. Higher molecular weight fraction of sericin induced higher amount of TNFα than lower molecular weight fraction. In conclusion, different molecular weight fraction of sericin induced TNFα differently.

Strategies for Improving Potassium Use Efficiency in Plants

  • Shin, Ryoung
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.575-584
    • /
    • 2014
  • Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.

종 식별 분자 마커 개발을 위한 섬모충류 Euplotes의 small subunit ribosomal RNA 변이성 분석 (Analysis of Genetic Variation in the Small Subunit Ribosomal RNA Gene of Euplotes Ciliates for Developing Species Diagnostic Molecular Marker)

  • 김선영;김세주;민기식;양은진;유만호;최중기
    • 한국해양학회지:바다
    • /
    • 제12권3호
    • /
    • pp.225-233
    • /
    • 2007
  • Small subunit ribosomal RNA (18S rRNA)의 loop 부위들의 변이를 분석하여 해양 섬모충류의 종 특이 유전적 마커로써 이용 가능성을 확인하고자 9종의 Euplotes (Hypotrichia : Ciliophora)에 대하여 18S rRNA 유전자의 염기서열 변이성을 조사하였다. 연구 결과에 의하면 V1, V3 그리고 V5 부위는 종간 변이가 없었고, V7과 V8은 종간변이는 높으나 염기서열의 길이가 각각 44 bp와 79 bp로 길이가 짧아서 충분한 유전 정보를 가지기 어렵기 때문에이 부위들은 종특이 분자마커로 적합하지 않았다. 그러나 V2와 V4부위는 $1.75{\sim}20.61%$로 높은 변이성을 보여주었고 종간 계통 관계도 잘 나타내었다. 또한 염기서열의 길이도 각각 123 bp와 306 bp로 마커 개발에 충분한 길이를 가지고 있었다. 따라서 18S rRNA의 V2와 V4부위는 섬모충류의 종 특이 분자 마커 개발에 가장 적합한 부위라는 결론을 얻었다.

모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별 (Identification of Beef Breed using DNA Marker of Coat Color Genes)

  • 정의룡;정구용
    • 한국축산식품학회지
    • /
    • 제24권4호
    • /
    • pp.355-360
    • /
    • 2004
  • 본 연구는 축우의 모색발현에 관여하는 MC1R, MGF 및 TYRP1 3종류의 모색 유전자의 PCR-RFLP marker를 이용하여 쇠고기 품종 판별기술을 개발하고자 수행하였다. MC1R 유전자의 104번째 아미노산을 지정하는 codon에 GGT 염기를 갖고 있는 Holstein 젖소와 Angus 육우는 제한효소 인지부위가 존재하여 537 bp증폭산물이 절단되어 329와 208bp 두개의 band가 검출되었으나 한우에서는 GTG로 G 염기가 T염기로 치환됨으로써 제한효소 인식부위가 소실되어 537 bp의 단일 bind 만이 검출되었다. 따라서, 이처럼 MC1R 모색유전자의 품종 간 특정 염기서열의 차이가 곧 특정 제한효소의 염기 서열상의 인지 부위 차이를 가져와 한우와 Holstein 젖소 및 Angus 육우 품종간의 RFLP 유전자형 출현에 확실한 차이가 인정되어 한우 품종에 특이적인 MC1R 유전자의 RFLP marker를 이용한 한우육 판별이 가능하였다. 또한, MGF 유전자의 RFLP 유전자형 출현빈도에서 한우는 r/r형이 75%로 출현율이 매우 높은 유전자형으로 분석된 반면 Hereford종은 R/R 형이 80%로 출현율이 매우 높았고 Holstein종과 Angus종은 R/r형이 100% 출현함으로써 한우와 Holstein 및 수입육우 품종간의 MGF 유전자형 출현빈도에 뚜렷한 차이가 인정되었다. 한편, TYRP1 유전자의 RFLP유전자형을 분석한 결과 모든 품종에서 동일한 RFLP type이 검출되어 TYRP1 모색 유전자를 이용한 쇠고기 품종 구별은 불가능한 것으로 나타났다. 따라서, 소 모색 관련 MC1R과 MGF 두 유전자의 품종 특이적 PCR-RFLP 유전자형은 한우육과 국내산 Holstein젖소고기 및 Angus 수입육간의 품종을 식별하는데 매우 유용한 DNA marker로 이용될 수 있음이 확인되었다.

Proteomic analysis of porcine pancreas development

  • Choi, Jong-Soon;Cho, Young-Keun;Yoon, Sung-Ho;Kwon, Sang-Oh;Koo, Deog-Bon;Yu, Kweon
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.661-666
    • /
    • 2009
  • Porcine pancreas development is not well studied at the molecular level despite being a therapeutic resource for diabetic patients. In this study, we investigated expression of lineage markers and performed proteomic analysis. Expression of the early lineage markers Pdx1 and Ptf1a was developmentally conserved between mice and pigs, whereas expression of the islet differentiation marker Pax4 was delayed in porcine compared with murine pancreas development. Proteomic analysis found that expression levels of chymotrypsinogen were down-regulated during porcine pancreas development while those of digestive enzymes like lipases, elastase and serine protease were up-regulated. In addition, specific isoforms of protein folding assistants such as protein disulfide isomerase and prefoldin were expressed at specific stages during the maturation of digestive enzymes. Taken together, these results show that development of the porcine pancreas is regulated by a concerted interplay of pancreas lineage marker proteins and other specified proteins, resulting in a functional endocrine and exocrine organ.

Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea

  • Lee, Soon Jeong;Jee, Bo Young;Son, Maeng-Hyun;Lee, Sang-Rae
    • ALGAE
    • /
    • 제32권2호
    • /
    • pp.155-160
    • /
    • 2017
  • Red rot disease has caused a major decline in Pyropia (Nori) crop production in Korea, Japan, and China. To date, only Pythium porphyrae (Pythiales, Oomycetes) has been reported as the pathogen causing red rot disease in Pyropia yezoensis (Rhodophyta, Bangiales). Recently, Pythium chondricola was isolated from the infected blades of Py. yezoensis during molecular analyses using the mitochondrial cox1 region. In this study, we evaluated the pathogenicity of P. chondricola as an algal pathogen of Py. yezoensis. Moreover, a new cox2 marker was developed with high specificity for Pythium species. Subsequent to re-inoculation, P. chondricola successfully infected Py. yezoensis blades, with the infected regions containing symptoms of red rot disease. A novel cox2 marker successfully isolated the cox2 region of Pythium species from the infected blades of Py. yezoensis collected from Pyropia aquaculture farms. cox2 sequences showed 100% identity with that of P. chondricola (KJ595354) and 98% similarity with that of P. porphyrae (KJ595377). The results of the pathogenicity test and molecular analysis confirm that P. chondricola is a new algal pathogen causing red rot disease in Pyropia species. Moreover, it could also suggest the presence of cryptic biodiversity among Korean Pythium species.