• Title/Summary/Keyword: Molecular Manufacturing

Search Result 184, Processing Time 0.028 seconds

Molecular Emission of CF4 Gas in Low-pressure Inductively Coupled Plasma

  • Jung, T.Y.;Kim, D.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.373-375
    • /
    • 2006
  • $CF_4$ gas is one of the most common chemicals used for dry etching in semiconductor manufacturing processes. For application to the etching process and environmental control, the low-pressure inductively coupled plasma (LP-ICP) was employed to obtain the spectrum of $CF_4$ gas. In terms of the analysis of the spectra, trace CF radical by A-X and B-X transitions was detected. The other $CF_x$ radicals, such as $CF_2$ and $CF_3$, were not seen in this experiment whereas strong C and $C_2$ emissions, dissociation products of $CF_4$ gas, were observed.

Technology Investigation of Polymer Insulator (Polymer Insulator의 개발 동향)

  • Kang, D.P.;Yoon, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.891-893
    • /
    • 1992
  • Polymers have good electrical properties as an insulation material. Though they show more and less poor resistance to heat, radiation, and oxygen, the poor properties have been overcame by developing new resin with the saturated molecular structure and compounding resin with resistive fillers. Polymer insulators have many advantages; light weight, good mechanical properties, better contaimination performance, low cost by mass productivity, no destruction in many pieces, good flexibility in design, short manufacturing time. Usage of polymer insulators has increased rapidly with good credit on long term properties in advanced nations and will continue to grow.

  • PDF

Synthesis and Photovoltaic Properties of Organo Dendritic Photosensitizers based on Carbazole for Dye-sensitized Solar Cells (신규 Carbazole 유도체의 합성과 이를 적용한 DSSC의 광전 변환 특성)

  • Jung, Daeyoung;Kim, Myeongseok;Yang, Hyunsik;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.1-119.1
    • /
    • 2011
  • Since Gratzel et al. reported the first efficient dye-sensitized solar cells(DSSCs) in 1991, they have attracted much attention due to their relatively high power conversion efficiency and potentially low cost production. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, the metal-free organic photosensitizers are strongly desired. The metal-free organic dyes offer superior molar extinction coefficients, low cost, and diverse molecular structures as compared to the conventional Ru-dyes, In this work, we have studied on the synthesis and characterization of the organo dendritic dyes containing different number of electron acceptor moieties in a molecule.

  • PDF

Effects of electron beam treatment on cotton linter for the preparation of nanofibrillated cellulose

  • Le, Van Hai;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • Nanofibrillated cellulose (NFC) was prepared from cotton linter after electron beam irradiation to investigate its effects on the manufacturing efficiency of the NFC preparation and the property changes by the treatment. Mechanical device (Super Masscolloider) was used to prepare the NFC and its passing frequency for each NFC preparation was recorded. More electron beam irradiation resulted in less passing frequency. Alpha cellulose content, molecular weight, crystallinity index, and thermal decomposition behavior of each treatment were lowered by electron beam treatment (10 and 100 kGy) and grinding process. NFC films were prepared to investigate their mechanical properties. There were little changes in tensile properties of the NFC films.

Photobiomodulation and implants: implications for dentistry

  • Tang, Elieza;Arany, Praveen
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.262-268
    • /
    • 2013
  • The use of dental implants has become a mainstay of rehabilitative and restorative dentistry. With an impressive clinical success rate, there remain a few minor clinical issues with the use of implants such as peri-implant mucositis and peri-implantitis. The use of laser technology with implants has a fascinating breadth of applications, beginning from their precision manufacturing to clinical uses for surgical site preparation, reducing pain and inflammation, and promoting osseointegration and tissue regeneration. This latter aspect is the focus of this review, which outlines various studies of implants and laser therapy in animal models. The use of low level light therapy or photobiomodulation has demonstrated its efficacy in these studies. Besides more research studies to understand its molecular mechanisms, significant efforts are needed to standardize the clinical dosing and delivery protocols for laser therapy to ensure the maximal efficacy and safety of this potent clinical tool for photobiomodulation.

A Study on the Manufacturing Technology Development of High Purity NanoPowder (고순도 나노분말 제조기술 개발에 관한 연구)

  • 박영문;차용훈;성백섭;윤길하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1178-1181
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to learn to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

Optimization of Nano-machining parameters using Acoustic Emission and Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 손정무;이성환;최장은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.50-55
    • /
    • 2003
  • Atomic force microscope(AFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscale. AFM with suitable tips is being used for nanofabrication nanomachining purposes. In this paper, machining characteristics of silicon have been investigated by nano indentation and nano scratch. Mechanisms of material removal on the microscale are studied and the Taguchi method is introduced to acquire optimum parameters for nanomachining. This work shows effectiveness of the Taguchi method in nanomachining. Also, Acoustic Emission(AE) is introduced for the monitoring of nanomachining.

  • PDF

A Study on the Development of the Superprecision Nano Separator (초정밀 나노 분급기 개발에 관한 연구)

  • 성백섭;윤길하;차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to loam to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF