• 제목/요약/키워드: Molecular Manufacturing

검색결과 185건 처리시간 0.028초

Alcalase에 의한 유청단백질 가수분해물의 항원성 저감 효과 (Reduction in antigenesity of whey protein by alcalase)

  • 유재민;렌친핸드;;정석근;백승희;남명수
    • 농업과학연구
    • /
    • 제40권4호
    • /
    • pp.359-365
    • /
    • 2013
  • The aim of this study was to produce enzymatic hydrolysis of ${\alpha}$-LA, ${\beta}$-LG and BSA with alcalase for the possible application of hypoallergenic foods toward cow's milk allergenic infant. The molecular weights of most of the peptides in hydrolysates from ${\alpha}$-LA, ${\beta}$-LG and BSA by alcalase were below 3,000 dalton. Antigenesity of ${\alpha}$-LA, ${\beta}$-LG and BSA hydrolysates to rabbit anti-${\alpha}$-LA antiserum, ${\beta}$-LG antiserum and BSA antiserum were remarkably decreased by more than $10^{-3}$ at 20% inhibitionrate. Antigenesity of polyvalent antigenic peptide in ${\alpha}$-LA, ${\beta}$-LG and BSA hydrolysates to specific rabbit anti-${\alpha}$-LA antiserum, ${\beta}$-LG antiserum and BSA antiserum was determined by PCS test using guina-pig. Hydrolysates of ${\alpha}$-LA, ${\beta}$-LG and BSA with less than 3,000 dalton did not show polyvalent antigenic reaction against rabbit antiserum. Hydrolysates of ${\alpha}$-LA, ${\beta}$-LG and BSA could be a source for the manufacturing of hypoallergenic food.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • 대한화장품학회지
    • /
    • 제25권4호
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and E and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then the on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to form a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5:1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin's moisture. Vitamins A and E contribute to preventing skin aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer. The crystalline structures of gel were surface-chemically-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC. Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Daegeon and Pusan in Korea and Hokkaido, Osaka and Miyazaki in Japan with correlation to the climate.

  • PDF

반도체 조립공정의 화학물질 노출특성 및 작업환경관리 (Exposure Characteristics for Chemical Substances and Work Environmental Management in the Semiconductor Assembly Process)

  • 박승현;박해동;신인재
    • 한국산업보건학회지
    • /
    • 제24권3호
    • /
    • pp.272-280
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate the characteristics of worker exposure to hazardous chemical substances and propose the direction of work environment management for protecting worker's health in the semiconductor assembly process. Methods: Four assembly lines at two semiconductor manufacturing companies were selected for this study. We investigated the types of chemicals that were used and generated during the assembly process, and evaluated the workers' exposure levels to hazardous chemicals such as benzene and formaldehyde and the current work environment management in the semiconductor assembly process. Results: Most of the chemicals used at the assembly process are complex mixtures with high molecular weight such as adhesives and epoxy molding compounds(EMCs). These complex mixtures are stable when they are used at room temperature. However workers can be exposed to volatile organic compounds(VOCs) such as benzene and formaldehyde when they are used at high temperature over $100^{\circ}C$. The concentration levels of benzene and formaldehyde in chip molding process were higher than other processes. The reason was that by-products were generated during the mold process due to thermal decomposition of EMC and machine cleaner at the process temperature($180^{\circ}C$). Conclusions: Most of the employees working at semiconductor assembly process are exposed directly or indirectly to various chemicals. Although the concentration levels are very lower than occupational exposure limits, workers can be exposed to carcinogens such as benzene and formaldehyde. Therefore, workers employed in the semiconductor assembly process should be informed of these exposure characteristics.

Selection of Starter Cultures and Optimum Conditions for Lactic Acid Fermentation of Onion

  • Choi, You-Jung;Cheigh, Chan-Ick;Kim, Su-Woo;Jang, Jae-Kweon;Choi, Young-Jin;Park, Young-Seo;Park, Hoon;Shim, Kun-Sub;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1100-1108
    • /
    • 2009
  • Lactic acid bacteria (LAB) isolated from various fruits and vegetables were screened in order to determine appropriate fermentation starters for manufacturing functional fermented onion juice. From the initial screening test comprising more than 700 isolated LAB, 16 isolates were selected based on their acid production rate. Among the selected isolates, the fermentation broth of KC-007 exhibited the highest electron donating and nitrite scavenging activities, with values at pH 1.2 of 95.6 and 68.7%, respectively. From the overall results obtained in this study, we finally selected the bacterium KC-007 as a fermentation starter. This bacterium was identified and named as Pediococcus pentosaceus based on its morphological and physiological characteristics, carbon-utilization pattern (as assessed using an API 50CHL kit), and molecular genetic characteristics (as assessed using the nucleotide sequence of the 16S rRNA gene). The optimal temperature, pH, and starter inoculation concentration (v/v) required for growth of the isolated strain were $40^{\circ}C$, pH 4.0-6.0, and 2%(v/v), respectively.

혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화 (Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency)

  • 박재용;김상락;이원구;유진식;김용대;맹주성;한석영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.

능동형 미소혼합기의 근사최적화 (Approximate Optimization of an Active Micro-Mixer)

  • 박재용;김상락;유진식;임민규;김용대;한석영;맹주성
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.95-100
    • /
    • 2008
  • An active micro-mixer, which is composed of an oscillating micro-stirrer in the micro-channel to provide effective mixing was optimized. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight micro-channel and micro-channel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models were compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an approximate optimization of an active micro-mixer with an oscillating stirrer was performed using Kriging method with OLHD(Optimal Latin Hypercube Design) in order to determine the optimal design variables. The design parameters were established as the frequency, the length and the angle of the stirrer. The optimal values were obtained as 1.0346, 0.66D and $\pm45^{\circ}$, respectively. It was found that the mixing index of the optimal design increased by 88.72% compared with that of the original design.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 1999년도 IFSCC . ASCS 학술대회 발표 논문
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and I and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have ·to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then tile on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to from a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5 : 1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin’s moisture. Vitamins A and I contribute to preventing skin’aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer, The crystal 1 me structures of gel were surface-chemical1y-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC, Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Baegeon and Pusan in Korea and Hokkaido, Oska and Miyazaki in Japan with correlation to the climate.

  • PDF

Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode

  • Kim, Jin-Sik;Jeong, Hyeongseop;Song, Saemee;Kim, Hye-Yeon;Lee, Kangseok;Hyun, Jaekyung;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.180-186
    • /
    • 2015
  • Escherichia coli AcrAB-TolC is a multidrug efflux pump that expels a wide range of toxic substrates. The dynamic nature of the binding or low affinity between the components has impeded elucidation of how the three components assemble in the functional state. Here, we created fusion proteins composed of AcrB, a transmembrane linker, and two copies of AcrA. The fusion protein exhibited acridine pumping activity, suggesting that the protein reflects the functional structure in vivo. To discern the assembling mode with TolC, the AcrBA fusion protein was incubated with TolC or a chimeric protein containing the TolC aperture tip region. Three-dimensional structures of the complex proteins were determined through transmission electron microscopy. The overall structure exemplifies the adaptor bridging model, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel interaction with the ${\alpha}$-barrel tip region of TolC, and a direct interaction between AcrB and TolC is not allowed. These observations provide a structural blueprint for understanding multidrug resistance in pathogenic Gram-negative bacteria.

저이용 홍어 가공 부산물을 이용한 고기능성 물질의 생산기술 개발에 관한 연구(1) - 홍어연골을 이용한 콘드로이틴 황산 소재 개발 (A Study on Development of High Functional Materials Producing Technique using By-products from Skate Processing (1) - Development of Chondroitin Sulfate Materials using Skate Cartilages)

  • 백장미;강건희;김상호;노정숙;정갑섭
    • 한국환경과학회지
    • /
    • 제25권5호
    • /
    • pp.645-654
    • /
    • 2016
  • For the purpose of reuse the wasted by-products from the skate process to the health functional food or medicinal material, chondroitin sulfate was extracted from the skate cartilage with the method of hydrolysis with protease enzyme, and the contents of chondroitin sulfate and hydrolyzed protein were measured qualitatively and quantitatively. The effects of chondroitin sulfate on body weight or liver weight changes, hepatotoxicity elimination and anti-inflammatory actions were measured from in vivo test with feed-treated mice. From the hydrolytic extraction of skate cartilage with the mixture of 1% alcalase and 1% protease for 4 hours, the extraction yield of chondroitin sulfate was about 32.55%. The content and molecular weight of chondroitin sulfate was 26.63% and $2.85{\times}10^5Da$., respectively and the content ratio of chondroitin sulfate to protein was measured to 1 to 2.76 with gel permeation chromatography. For the odor component, trimethylamine decreased about 30% but almost not ammonia from chondroitin sulfate with the treatment of activated carbon. From the feeding chondroitin sulfate to mice, the control effect of body and liver weights decrease was measured, anti-inflammatory action and hepatotoxicity elimination action were also measured. From these results, process operation conditions for manufacturing of chondroitin sulfate were suggested.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • 한국축산식품학회지
    • /
    • 제39권5호
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).