• Title/Summary/Keyword: Molecular Dynamics Simulations

Search Result 388, Processing Time 0.029 seconds

Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

  • John, Arun;Umashankar, Vetrivel;Krishnakumar, Subramanian;Deepa, Perinkulam Ravi
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and ${\beta}$-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and ${\beta}$-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains.

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

Material modeling of the temperature rise at high-strain-rate deformation (고변형률 변형하에서 재료 내부의 온도상승 계산을 위한 재료 모델링)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.60-68
    • /
    • 2004
  • High velocity impacts are accompanied with large deformations, which generate a large amount of heat due to plastic works, resulting in a significant temperature rise of the material. Because the elevated temperature affects the dynamic properties of materials, it is important to predict the temperature rise during high-stram-rate deformations. Both existing vacancies and excess vacancies are credited to the stored energy, yet it is difficult to distinguish one from another in contribution to the stored energy using macroscopic level materials models. In this study, an atomistic material model for fee materials such as copper is set up to calculate the stored energy using molecular dynamics (MD) simulations. It is concluded that excess vacancies play an important role for the stored energy during a high-strain-rate deformation.

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong;Li, Wei Zhong;Song, Yong Chen;Weng, Lin Dong;Zhang, Ning
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2238-2246
    • /
    • 2012
  • Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes (기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구)

  • Suk, Myung Eun
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.388-394
    • /
    • 2018
  • Carbon nanotube (CNT) based membranes are promising candidates for separation membranes by showing high water transport rate and ion rejection rate according to their radii. The ion selectivity is an important factor to discover the full potential of CNT membranes, and it is affected by the functionalization of CNTs. With multivalent/size ion mixtures, the ion selectivity is affected by not only ion-functional groups interaction but also ion-ion interactions and ion size exclusion in a complex manner. In this study, molecular dynamics simulations are performed to study the ion selectivity of functionalized carbon nanotubes when multivalent/size ions are contained. The permeation energy barriers are calculated by plotting potential of mean force profiles, and various factors, such as CNT size and partial charges, affecting ion selectivity are investigated. The results presented here will be useful for designing CNT membranes for ion separation, biomimetic ion channels, etc.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

NEUTRON SCATTERING INVESTIGATIONS OF PROTON DYNAMICS OF WATER AND HYDROXYL SPECIES IN CONFINED GEOMETRIES

  • Chen, S.H.;Loong, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.201-210
    • /
    • 2006
  • This article presents a brief overview of an important area of neutron scattering: the general principles and techniques of elastic, quasielastic and inelastic scattering from a system composed predominately of incoherent scatterers. The methodology is then applied to the study of water, specifically when it is confined in nanometer-scale environments. The confined water exhibits uniquely anomalous properties in the supercooled state. It also nourishes biological functions, and supports essential chemical reactions in living systems. We focus on recent investigations of water encapsulated in nanoporous silica and carbon nanotubes, hydrated water in proteins and water or hydroxyl species incorporated in nanostructured minerals. Through these scientific examples, we demonstrate the advantages derived from the high sensitivity of incoherent neutron spectroscopy to hydrogen atom motions and hydrogen-bond dynamics, aided by rigorous data interpretation method using molecular dynamics simulations or theoretical modelling. This enables us to probe the inter-/intramolecular vibrations and relaxation/diffusion processes of water molecules in a complex environment.

Computational Study on Oligomer Formation of Fibril-forming Peptide of α-Synuclein

  • Park, Seong-Byeong;Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.848-854
    • /
    • 2012
  • We have studied the oligomerization of a fibril-forming segment of ${\alpha}$-Synulcein using a replica exchange molecular dynamics (REMD) simulation. The simulation was performed with trimers and tetramers of a 12 amino acid residue stretch (residues 71-82) of ${\alpha}$-Synulcein. From extensive REMD simulations, we observed the spontaneous formation of both trimer and tetramer, demonstrating the self-aggregating and fibril-forming properties of the peptides. Secondary structure profile and clustering analysis illustrated that antiparallel ${\beta}$-sheet structures are major species corresponding to the global free energy minimum. As the size of the oligomer increases from a dimer to a tetramer, conformational stability is increased. We examined the evolution of simple order parameters and their free energy profiles to identify the process of aggregation. It was found that the degree of aggregation increased as time passed. Tetramer formation was slower than trimer formation and a transition in order parameters was observed, indicating the full development of tetramer conformation which is more stable than that of the trimer. The shape of free energy surface and change of order parameter distributions indicate that the oligomer formation follows a dock-and-lock process.