• 제목/요약/키워드: Molecular Dynamic Simulation

검색결과 104건 처리시간 0.021초

Simulation of material failure behavior under different loading rates using molecular dynamics

  • Kim, Kunhwi;Lim, Jihoon;Kim, Juwhan;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.177-190
    • /
    • 2008
  • Material failure behavior is generally dependent on loading rate. Especially in brittle and quasi-brittle materials, rate dependent material behavior can be significant. Empirical formulations are often used to predict the rate dependency, but such methods depend on extensive experimental works and are limited by practical constraints of physical testing. Numerical simulation can be an effective means for extracting knowledge about rate dependent behavior and for complementing the results obtained by testing. In this paper, the failure behavior of a brittle material under different loading rates is simulated by molecular dynamics analysis. A notched specimen is modeled by sub-million particles with a normalization scheme. Lennard-Jones potential is used to describe the interparticle force. Numerical simulations are performed with six different loading rates in a direct tensile test, where the loading velocity is normalized to the ratio of the pseudo-sonic speed. As a consequence, dynamic features are achieved from the numerical experiments. Remarkable failure characteristics, such as crack surface interaction/crack arrest, branching, and void nucleation, vary in case of the six loading cases. These characteristics are interpreted by the energy concept approach. This study provides insight into the change in dynamic failure mechanism under different loading rates.

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Zeighampour, Hamid;Beni, YaghoubTadi
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.607-620
    • /
    • 2021
  • In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

Leucine Zipper as a Fine Tuner for the DNA Binding; Revisited with Molecular Dynamics Simulation of the Fos-Jun bZIP Complex

  • 최용훈;양철학;김현원;정선호
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권11호
    • /
    • pp.1319-1322
    • /
    • 1999
  • Leucine zipper dynamically tunes the degree of bifurcation of the DNA binding segments in the basic region of the Fos-Jun bZIP complex. Molecular dynamics simulation indicated that site-specific mutagenesis of conserved leucine residues inside the leucine zipper domain caused the change of dynamic behavior of the basic region, and efficient DNA binding occurs only within a certain range of distance between the two DNA binding segments in the basic region. Distribution of α-helices in the hinge region is also suggested to influence the bifurcation of the DNA binding segments.

MD 시뮬레이션을 이용한 실린더 형태 나노와이어의 접촉면적에 관한 연구 (Determination of Contact Area of Cylindrical Nanowire using MD Simulation)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Contact between solid surfaces is one of the most important factors that influence dynamic behavior in micro/nanoscale. Although numerous theories and experimental results on contact behavior have been proposed, a thorough investigation for nanomaterials is still not available owing to technical difficulties. Therefore, molecular dynamics simulation was performed to investigate the contact behavior of nanomaterials, and the application of conventional contact theories to nanoscale was assessed in this work. Particularly, the contact characteristics of cylindrical nanowires were examined via simulation and contact theories. For theoretical analysis, various contact models were utilized and work of adhesion, Hamaker constant and elastic modulus those are required for calculation of the models were obtained from both indentation simulation and tensile simulation. The contact area of the cylindrical nanowire was assessed directly through molecular dynamics simulation and compared with the results obtained from the theories. Determination of the contact area of the nanowires was carried out via simulation by counting each atom, which is within the equilibrium length. The results of the simulation and theoretical calculations were compared, and it was estimated that the discrepancy in the results calculated between the simulation and the theories was less than 10 except in the case of the smallest nanowires. As the result, it was revealed that contact models can be effectively utilized to assess the contact area of nanomaterials.

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Targeting of integrin αvβ3 with different sequence of RGD peptides: A molecular dynamics simulation study

  • Azadeh Kordzadeh;Hassan Bardania;Esmaeil Behmard;Amin Hadi
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2023
  • Integrin αvβ3 is one of the receptors expressed in cancer cells. RGD peptides have the potential to target integrin αvβ3 (receptor), which can increase drug delivery efficiency. In this study, 55 different RGD dimer motifs were investigated. At first, the binding energy between RGD peptides and the receptor was calculated using molecular docking. Then, three RGD peptides with the strongest binding energy with the receptor were selected, and their dynamic adsorption on the receptor was simulated by molecular dynamics (MD). The obtained results showed that a sequence that has RGD at the beginning and end with tryptophan (TRP) has strong Lennard-Jones (LJ) and electrostatic interactions with Integrin αvβ3 and has changed the conformation of receptor significantly, which analyzed by root mean square deviation (RMSD) and radius of gyration.

분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구 (A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics)

  • 이광호;권태우;하만영
    • 설비공학논문집
    • /
    • 제30권1호
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

A Molecular Dynamics Study on the Gas Permeation of Glassy Polymer

  • Goo, Hyung Seo;Kim, In Ho;Ha, SeongYong;Cho, Dae Myeong;Rhim, Ji Won;Nam, SangYong
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.30-36
    • /
    • 2004
  • The gas permeation performance of commercially available polyetherimide (Ultem$\^$/) is simulated by means of molecular dynamics methods. By the observation of trajectory, long distance hopping of gas molecules is needed to transverse from top to bottom of membrane. Two possibilities mechanism of diffusion phenomena through glassy polymers can be issued. Diffusion coefficients were calculated by Einstein relation equation. In solubility simulation, the value of the constants C'$\_$H/ and b for O$_2$ at 300 K were calculated. The diffusion and solubility coefficient of He for PEI were simulated in this simulation work. the permeability coefficient is 9.88 Barrer. This value is closed to experimental value of 9.4 Barrer.