• Title/Summary/Keyword: Molecular Diagnostics Technology

Search Result 36, Processing Time 0.028 seconds

Slipchip Device Development in Molecular Diagnostics

  • Qingtian Yin;Huiwen Bai;Ruijie Li;Youngung Seok
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device's versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.

Application of Molecular Diagnostics Technology in the Development of a Companion Diagnostics for Malignant Solid Tumors (악성 고형암의 항암제 동반진단 기술에서 분자진단기술의 적용)

  • Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.365-374
    • /
    • 2019
  • Unlike benign tumors, malignant tumors are capable of metastasis, easy to relapse, poor survival, and low quality of life. In Korea, here is a tendency to treat the tumors collectively according to the General Principles of Cancer Chemotherapy(GPCC) of the Health Insurance Review & Assessment Service (HIRA). But recently, companion diagnostics(CDx) is recommended rather than unilateral medication because biomarker-based molecular diagnostics is possible to predict the drug response of patients before drug treatment. Not only domestic but also overseas Food and Drug Administratio (FDA) recommends the development of the CDx system at the stage of drug development to ensure the responsiveness and safety of medicines. In this study, I focused on the necessity of CDx development direction as well as CDx development status through literature review. Furthermore I also discussed CDx types according to the molecular diagnostic technology such as immunohistochemistry (IHC), polymerase chain reaction (PCR), in situ hybridization (ISH), and next-generation sequencing (NGS) not only in the approved CDx but also in the developing one by US FDA. And I suggested the technology issue of CDx development process such as a selection of molecular diagnostics at the time of release, a clear understanding of the CDx mechanism, and a convergence of drug with CDx development. The necessity of social insurance system also was proposed for CDx development.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Analysis of Patent Trend on Dengue Virus Detection Technology (뎅기 바이러스 검출기술 관련 특허동향 분석)

  • Choi, Jae-Won;Jo, Byung-Gwan;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • Dengue virus is a typical mosquito-borne virus, and the half of the world's population is exposed to infection. Dengue virus causes relatively mild symptoms such as dengue fever. However, when not treated properly, it is known to cause severe symptoms such as dengue hemorrhagic fever and dengue shock syndrome with a mortality rate of over 20%. Development of dengue virus detection technology is very important because it is reported that early diagnosis of dengue fever can lower the mortality rate to less than 1%. In this study, patent search related to dengue virus detection technology was conducted in Korea, USA, Europe, Japan, and China. The quantitative analysis of 69 validated patents from the searched patents was conducted by country, year, and patent holder. In addition, in-depth analysis was carried out by classifying into three categories: molecular diagnostics, immuno-diagnostics, and cell culture-based diagnostics from all validated patents. From these results, we analyzed the patent trend related to dengue virus detection and dengue fever diagnosis technology and discussed the features and limitations of molecular diagnostics and immuno-diagnostics at present level. Furthermore, we discussed the direction of technology development and future prospects to overcome limitations.

A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis

  • Song, Shengnan;Zhang, Qian;Yang, Hang;Guo, Jia;Xu, Mingguo;Yang, Ningning;Yi, Jihai;Wang, Zhen;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.50.1-50.12
    • /
    • 2022
  • Background: There is an urgent need to find reliable and rapid bovine tuberculosis (bTB) diagnostics in response to the rising prevalence of bTB worldwide. Toll-like receptor 2 (TLR2) recognizes components of bTB and initiates antigen-presenting cells to mediate humoral immunity. Evaluating the affinity of antigens with TLR2 can form the basis of a new method for the diagnosis of bTB based on humoral immunity. Objectives: To develop a reliable and rapid strategy to improve diagnostic tools for bTB. Methods: In this study, we expressed and purified the sixteen bTB-specific recombinant proteins in Escherichia coli. The two antigenic proteins, MPT70 and MPT83, which were most valuable for serological diagnosis of bTB were screened. Molecular docking technology was used to analyze the affinity of MPT70, MPT83, dominant epitope peptide of MPT70 (M1), and dominant epitope peptide MPT83 (M2) with TLR2, combined with the detection results of enzyme-linked immunosorbent assay to evaluate the molecular docking effect. Results: The results showed that interaction surface Cα-atom root mean square deviation of proteins (M1, M2, MPT70, MPT83)-TLR2 protein are less than 2.5 A, showing a high affinity. It is verified by clinical serum samples that MPT70, MPT83, MPT70-MPT83 showed good diagnostic potential for the detection of anti-bTB IgG and M1, M2 can replace the whole protein as the detection antigen. Conclusions: Molecular docking to evaluate the affinity of bTB protein and TLR2 combined with ELISA provides new insights for the diagnosis of bTB.

Nanotechnology in Cancer Therapy: Overview and Applications

  • Choi, Eun-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • Nanotechnology for cancer therapy is playing a pivotal role in dramatically improving current approaches to cancer detection, diagnosis, and therapy while reducing toxic side effects associated with previous cancer therapy. A widespread understanding of these new technologies will lead to develop the more refined design of optimized nanoparticles with improved selectivity, efficacy and safety in the clinical practice of oncology. This review provides an integrated overview of applications and advances of nanotechnology in cancer therapy, based on molecular diagnostics, treatment, monitoring, target drug delivery, approved nanoparticle-based chemotherapeutic agents, and current clinical trials in the development of nanomedicine and ultimately personalized medicine.

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta;Beikircher, Gabriel;Weinhaeusel, Andreas;Gruber, Reinhard
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.66-76
    • /
    • 2017
  • Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

Nanobiotechnology, Today and Tomorrow (나노바이오공학의 오늘과 내일)

  • Lee, Chang-Soo;Park, Hyun-Kyu;Kim, Moon-Il
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.223-231
    • /
    • 2006
  • Nanobiotechnology, the interdisciplinary area at the crossroad of biotechnology and nanoscience, combines contributions from molecular and cell biology, chemisty, material science, and physics in an attempt to understand the behavior of nanobiomaterials, their development and applications. At present, nanobiotechnology is believed to hold great promise for improving health and prolonging life, faciliating biomarker discovery, molecular diagnostics, discovery of novel drugs and drug delivery, which are important basic components of biomedical science. In the recent trend of nanobiotechnology, this review is intended to provide a better understanding of nanobiotechnology in its applications and perspectives, separating this integration technology into three parts such as nanobiochip/sensor, nanobiomaterials, and nanobioanalysis in order to hopefully gain insights into why size matters, how nano-materials and -devices can be engineered.