• 제목/요약/키워드: Molecular Diagnostic Techniques

검색결과 68건 처리시간 0.019초

호흡기 감염병 진단 기술 동향 (Trends in Diagnostic Technology for Respiratory Infectious Disease)

  • 박정원;서홍석;허철;박수준
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.54-62
    • /
    • 2024
  • The emergence and resurgence of novel respiratory infectious diseases since the turn of the millennium, including SARS, H1N1 flu, MERS, and COVID-19, have posed a significant global health threat. Efforts to combat these threats have involved various approaches, however, continued research and development are crucial to prepare for the possibility of emerging viruses and viral variants. Direct detection methods for viral pathogens include molecular diagnostic techniques and immunodiagnostic methods, while indirect diagnostic methods involve detecting changes in the condition of infected patients through imaging diagnostics, gas analysis, and biosignal measurement. Molecular diagnostic techniques, utilizing advanced technologies such as gene editing, are being developed to enable faster detection than traditional PCR methods, and research is underway to improve the efficiency of diagnostic devices. Diagnostic technologies for infectious diseases continue to evolve, and several key trends are expected to emerge in the future. Automation will facilitate widespread adoption of rapid and accurate diagnostics, portable diagnostic devices will enable immediate on-site diagnosis by healthcare professionals, and advancements in AI-based deep learning diagnostic models will enhance diagnostic accuracy.

Integrated diagnostic approach of pediatric neuromuscular disorders

  • Lee, Ha Neul;Lee, Young-Mock
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.55-63
    • /
    • 2018
  • Clinical and genetic heterogeneity in association with overlapping spectrum is characteristic in pediatric neuromuscular disorders, which makes confirmative diagnosis difficult and time consuming. Considering evolution of molecular genetic diagnosis and resultant upcoming genetically modifiable therapeutic options, rapid and cost-effective genetic testing should be applied in conjunction with existing diagnostic methods of clinical examinations, laboratory tests, electrophysiologic studies and pathologic studies. Earlier correct diagnosis would enable better clinical management for these patients in addition to new genetic drug options and genetic counseling.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제8권1호
    • /
    • pp.45-49
    • /
    • 2022
  • With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.

Real-Time Pleural Elastography: Potential Usefulness in Nonintubated Video-Assisted Thoracic Surgery

  • Tacconi, Federico;Chegai, Fabrizio;Perretta, Tommaso;Ambrogi, Vincenzo
    • Journal of Chest Surgery
    • /
    • 제54권5호
    • /
    • pp.433-435
    • /
    • 2021
  • Pleural adhesions are a major challenge in standard and nonintubated video-assisted thoracic surgery. The currently available imaging techniques help to assess the presence and extent of pleural adhesions, but do not provide information on tissue deformability, which is crucial for intraoperative management. In this report, we describe the utilization of real-time elastography mapping of pleural adhesions. This technique enabled us to detect areas with softer adhesions, and helped establish the surgical plan in a difficult case of a patient scheduled for nonintubated video-assisted thoracic surgery.

SARS-CoV-2의 진단기술 (Diagnostic Techniques for SARS-CoV-2 Detection)

  • 김종식;강나경;박선미;이은주;정경태
    • 생명과학회지
    • /
    • 제30권8호
    • /
    • pp.731-741
    • /
    • 2020
  • 코로나바이러스감염증-19(COVID-19)는 SARS-CoV-2에 의해 발병된다. 지금까지 인간에게 감염되는 7 가지 종류의 코로나 바이러스가 보고되었다. 그 중, HCoV-229E, HCoV-OC43, HCoV-NL63, 그리고 HCoV-HKU1 등 4종류의 코로나바이러스는 감기와 같은 단순 호흡기 질환을 유발한다고 보고되었다. 반면, SARS-CoV는 2002년에, MERS-CoV는 2012년에 각각 대유행을 일으킨 바 있다. 가장 최근에는 2019년 12월 중국 우한에서 처음 보고된 SARS-CoV-2가 전세계적인 대유행의 원인이 되고 있다. 이러한 SARS-CoV-2를 진단하고, 치료하고, 예방하기 위해서는 신속 정확한 진단키트, 치료제, 그리고 안전한 백신의 개발의 필수적으로 요구된다. 이러한 강력한 도구들을 개발하기 위해서는 SARS-CoV-2의 표현형, 유전자형, 그리고 생활주기 등의 연구가 선행되어야 한다. SARS-CoV-2의 진단기술은 현재 크게 두가지의 큰 분야인 분자진단과 면역혈청학적 진단으로 구분할 수 있다. 분자진단의 경우 SARS-CoV-2의 유전체를 대상으로 하며, 면역혈청학적 진단은 SARS-CoV-2의 항원 단백질 혹은 SARS-CoV-2에 대한 항체를 대상으로 한다. 본 총설에서는 SARS-CoV-2의 표현형, 유전체 구조, 그리고 유전자 발현에 대해서 정리하고, SARS-CoV-2에 대한 다양한 진단 기술 등에 대한 기초지식을 제공하고자 한다.

혈관신생 분자핵의학 영상 (Molecular Nuclear imaging of Angiogenesis)

  • 이경한
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

SARS-CoV-2 감염의 진단에 이용되는 검사실 테스트의 비교 (Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection)

  • 이창근;이동섭
    • 대한임상검사과학회지
    • /
    • 제54권2호
    • /
    • pp.79-94
    • /
    • 2022
  • COVID-19로 인한 높은 전염성과 호흡기 질환의 심각성 때문에, 전염의 확산을 더 잘 모니터링하고 예방하기 위해 경제적이고 정확한 검사가 필요하다. COVID-19 대유행의 초기 단계에서 SARS-CoV-2의 구조적 및 분자적 특성이 밝혀짐에 따라, 많은 COVID-19 진단 키트 제조업체들은 진단 테스트의 설계, 개발, 검증 및 구현에 적극적으로 투자했다. 현재, SARS-CoV-2에 대한 진단검사로써 신속한 항원, 특정 IgG 및 IgM 항체검사를 위한 면역 혈청학적 검사 그리고 분자 진단 검사가 가장 널리 사용되고 검증된 기술이다. 분자 진단 분석법은 SARS-CoV-2에 감염된 것으로 의심되는 개인에서 바이러스 RNA를 직접 검출하기 위한 gold standard이다. 항체 기반 혈청 검사는 지역사회에서 COVID-19 유병률을 결정하고 면역력을 획득한 개인을 식별하는 데 사용되는 간접 검사이다. 본 논문에서는 시판되고 FDA가 승인한 분자 및 면역학적 진단 측정을 평가하여 성능 특성을 분석하였다.

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • 제25권1호
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.