• Title/Summary/Keyword: Molecular Characterization

Search Result 3,075, Processing Time 0.03 seconds

Molecular Characterization of Marine Cyanobacteria from the Indian Subcontinent Deduced from Sequence Analysis of the Phycocyanin Operon (cpcB-IGS-cpcA) and 16S-23S ITS Region

  • Premanandh, Jagadeesan;Priya, Balakrishnan;Teneva, Ivanka;Dzhambazov, Balik;Prabaharan, Dharmar;Uma, Lakshmanan
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.607-616
    • /
    • 2006
  • Molecular characterization of ten marine cyanobacterial isolates belonging to the order Oscillatoriales was carried out using the phycocyanin locus (cpcBA-IGS) and the 16S-23S internally transcribed spacer region. DNA sequences from the phycocyanin operon discriminated ten genotypes, which corresponded to seven morphotypes identified by traditional microscopic analysis. The cpcB coding region revealed 17% nucleotide variation, while cpcA exhibited 29% variation across the studied species. Phylogenetic analyses support the conclusion that the Phormidium and Leptolyngbya genera are not monophyletic. The nucleotide variations were heterogeneously distributed with no or minimal informative nucleotides. Our results suggest that the discriminatory power of the phycocyanin region varies across the cyanobacterial species and strains. The DNA sequence analysis of the 16S-23S internally transcribed spacer region also supports the polyphyletic nature of the studied oscillatorian cyanobacteria. This study demonstrated that morphologically very similar strains might differ genotypically. Thus, molecular approaches comprising different gene regions in combination with morphological criteria may provide better taxonomical resolution of the order Oscillatoriales.

First Molecular Characterization of Hypoderma actaeon in Cattle and Red Deer (Cervus elaphus) in Portugal

  • Ahmed, Haroon;Sousa, Sergio Ramalho;Simsek, Sami;Anastacio, Sofia;Kilinc, Seyma Gunyakti
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.653-658
    • /
    • 2017
  • Hypoderma spp. larvae cause subcutaneous myiasis in several animal species. The objective of the present investigation was to identify and characterize morphologically and molecularly the larvae of Hypoderma spp. collected from cattle (Bos taurus taurus) and red deer (Cervus elaphus) in the district of Castelo Branco, Portugal. For this purpose, a total of 8 larvae were collected from cattle (n=2) and red deer (n=6). After morphological identification of Hypoderma spp. larvae, molecular characterization was based on PCR-RFLP and mitochondrial CO1 gene sequence analysis. All larvae were morphologically characterized as the third instar larvae (L3) of H. actaeon. Two restriction enzymes were used for molecular identification of the larvae. TaqI restriction enzyme was not able to cut H. actaeon. However, MboII restriction enzyme differentiated Hypoderma species showing 210 and 450 bp bands in H. actaeon. Furthermore, according to the alignment of the mt-CO1 gene sequences of Hypoderma species and to PCR-RFLP findings, all the identified Hypoderma larvae were confirmed as H. actaeon. This is the first report of identification of Hypoderma spp. (Diptera; Oestridae) from cattle and red deer in Portugal, based on morphological and molecular analyses.

Purification and characterization of a xylanase from alkalophilic cephalosporium sp. RYM-202

  • Kyu, Kang-Myoung;Kwon, Tae-Ik;Rhee, Yuung-Ha;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 1995
  • Alkalophilic Cephalosporium sp. RYM-202 produced multiple xylanases extracellularly. One of these xylanases was purified to electrophoretical homogeneity by chromatography with DEAE-Sephadex A-50, Sephacryl S-200 HR and Superose 12 HR. The purified xylanase differed from most other microbial xylanases in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase was 23 kDa by SDS-polyacrylamide electrophoresis and 24 kDa by gel permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permentation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity at pH 8.0 and 50 .deg.C. It was stable over a wide range of pH and retained more than 80% of its original activity after 24 h of incubation even at pH 12. The Km values of this enzyme on birchwood xylan and oat spelts xylan were 2.33 and 3.45 mg/ml, respectively. The complete inhibition of the enzyme of n-bromosuccinimide suggests the involvement of tryptophan in the active site. The sylanase lacked activity towards crystalline cellulose and carboxymethyl cellulose.

  • PDF

Purification and Biochemical Characterization of Recombinant Alanine Dehydrogenase fvom Thermus caldophilux GK24

  • Bae, Jung-Don;Cho, Youn-Jeung;Kim, Doo-Il;Lee, Dae-Sil;Shin, Hyun-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.628-631
    • /
    • 2003
  • The recombinant alanine dehydrogenase (ADH) from E. coli containing Thermus caldophilus ADH was purified to homogeneity from a cell-free extract. The enzyme was purified 38-fold with a yield of 68% from the starting cell-free extract. The purified enzyme gave a single band in polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 45 kDa. The pH optimum was 8.0 for reductive amination of pyruvate and 12.0 for oxidative deamination of L-alanine. The enzyme was stable up to $70^{\circ}C$. The activity of the enzyme was inhibited by 1 mM $Zn^{2+}$, 20% hexane, and 20% $CHCl_3$. However, 10 mM $Mg^{2+}$ and 40% propanol had no effect on the enzyme activity. The Michaelis constants ($K_m$) for the substrates were $50\;\mu\textrm{M}$ for NADH, 0.2 mM for pyruvate, 39.4 mM for $NH_4+$, 2.6 mM for L-alanine, and 1.8 mM for $NAD^+$.