• Title/Summary/Keyword: Molecular Characterization

Search Result 3,075, Processing Time 0.029 seconds

Purification and Characterization of Protein Phosphatase 2C from Rat Liver

  • Oh, Joung-Sook;Hwang, In-Seong;Choi, Myung-Un
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1997
  • Protein phosphatase 2C (PP2C) is one of the four major serine/threonine phosphatases which is dependent on $Mg^{2+}$ for its activity. PP2C was purified from rat liver cytosol and its characteristics were investigated. The substrate employed for routine assay was $[^{32}P]casein$ phosphorylated by PKA. The purification process involved DEAE chromatography, ammonium sulfate fractionation, phenyl sepharose chromatography, sephacryl 5-200 gel filtration, and histone agarose chromatography. The SDS-PAGE of PP2C showed one major single protein band at a position corresponding to a molecular mass of 43 kd and the purification fold was 637. The enzyme showed a pH optimum of 8 and $K_M$ value was $1.9\;{\mu}M$. However, when the substrate was changed to $[^{32}P]histone$, the pH optimum was shifted to 7 and $K_M$ value was $2.3\;{\mu}M.\;Mg^{2+}$ was essential to the enzyme activity and okadaic acid did not exert any inhibitory effect on the enzyme. To examine residue in the active site of PP2C effects of some protein-modifying reagents were tested.

  • PDF

Lignin Characterization of Waste Liquor by Modified Pulping Process (개량(改良)펄프화법(化法)으로 제조(製造)된 폐액(廢液)중의 리그닌의 특성(特性))

  • Hwang, Byung-Ho;Cho, Hern-Joung;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • This study was carried out to investigate the characterization of lignins from waste liquors in SP, KP, ASAM, and AS from Pinus densiflora, Quercus mongolica, and Betula ermanii. Spectroscopic study was applied to examine the lignins separated from different pulping process. Lignin contents in waste liqours increased in order of AS, ASAM, KP, and SP. UV spectra of three types of lignin except AS lignin showed similar pattern. IR spectra of AS lignin showed strong C=O absorptions in the range from 1730 to 1750$cm^{-1}$, where as those of KP, SP, and ASAM showed weak stretch in this region. NMR spectra of AS lignin showed strong characteristic chemical shifts of acetoxyl groups of acetylated aliphatic and aromatic hydroxyl groups at 2.0~2.5 ppm. Molecular weight of ASAM lignin from Pinus densiflora determined and found number average molecular weight 1,199, weight average molecular weight 5,458. z average molecular weight 17,242, and viscosity average molecular weight 5,457. It is considered from the results based on spectroscopic study of lignin that waste liquors (in SP, KP, ASAM and AS) from Pinus densiflora, Quercus mongolica, and Betula ermanii can be used for lignin utilization.

  • PDF

Biochemical Characterization of Oligomerization of Escherichia coli GTP Cyclohydrolase I

  • Lee, Soo-Jin;Ahn, Chi-Young;Park, Eung-Sik;Hwang, Deog-Su;Yim, Jeong-Bin
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.255-261
    • /
    • 2002
  • GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (H2NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.

Distribution of Chitinases in Rice (Oryza sativa L)Seed and Characterization of a Hull-Specific Chitinase

  • Baek, Je-Hyun;Han, Beom-Ku;Jo, Do-Hyun
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.310-315
    • /
    • 2001
  • The uneven distribution of acidic and basic chitinases in different parts of rice seed, and also the characterization of hull-specific chitinases, are reported here. After extraction of chitinases from polished rice, bran, and rice hulls, the chitinases were separated into acidic and basic fractions, according to their behavior on an anion exchanger column. Both fractions from different parts of rice seed showed characteristic activity bands on SDS-PAGE that contained 0.01% glycol chitin. The basic chitinases from rice hulls were further purified using chitin affinity chromatography. The chitinase, specific to rice hulls (RHBC), was 88-fold purified with a 1.3% yield. RHBC has an apparent molecular weight of 22.2 kDa on SDS-PAGE. The optimal pH and temperature were 4.0 and $35^{\circ}C$, respectively. With [$^3H$]chitin as a substrate, RHBC has $V_{max}$ of 13.51 mg/mg protein/hr and $K_m$ of 1.36 mg/ml. This enzyme was an endochitinase devoid of ${\beta}$-1,3-glucanase, lysozyme, and chitosanase activities.

  • PDF

Functional Genomics of Vibrio vulnificus: from Survival to Toxigenesis

  • Choi Sang Ho
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.132-136
    • /
    • 2004
  • Understanding the molecular pathogenesis of the multifaceted host-pathogen interaction is critical in the development of improved treatment and prevention, as well as elucidating how certain bacteria can circumvent host defenses, multiply in the host, and cause such extensive damage. Disease caused by infection with V. vulnificus is remarkable for the invasive nature of the infection, ensuing severe tissue damage, and rapidly fulminating course. The characterization of somatic as well as secreted products of V. vulnificus has yielded a large list of putative virulence attributes, whose known functions are easily imagined to explain the pathology of disease. These putative virulence factors include a carbohydrate capsule, lipopolysaccharide, a cytolysin/hemolysin, elastolytic metalloprotease, iron sequestering systems, lipase, and pili. However, only few among the putative virulence factors has been confirmed to be essential for virulence by the use of molecular Koch's postulates. This presentation describes molecular biological characterization of the virulence factors contributing to survival as well as to toxigenesis of V. vulnificus.

  • PDF

Proteins in the Postsynaptic Density of the Central Nervous System

  • Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 1999
  • The postsynaptic density (PSD) is a cytoskeletal specialization that is involved in the regulation of synaptic signal transduction. Mainly due to the hydrophobic nature of the PSD proteins, characterization of this intriguing structure at the molecular level has been very intractable until early 1990s. However, recent development in protein microchemistry and molecular cloning techniques allowed identification and characterization of the PSD proteins. As expected, cytoskeletal proteins constitute major components of the PSD. Other major PSD proteins have been identified by protein sequencing, and their genes were used to fish out associating proteins by yeast two-hybrid system expanding our knowledge on the molecular structure of the PSD significantly. In this review, I summarize proteins that are so far identified focusing on the glutamatergic synapses.

Chromatographic Characterization of Pentoxifylline and a Mixture of Caffeine-theophylline Imprinted Polymer (Pentoxifylline과 Caffeine-theophylline Imprinted Polymers의 크로마토그래피 특성)

  • 홍승표;왕덕선;구윤모;노경호
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • Two molecular imprinted polymers (MIPs) were prepared by using pentoxifylline and a mixture of caffeine-theophylline (2:1, mole ratio) as the templates, MAA as the monomer, and EDMA as the crosslinker The obtained polymer particles (particle size 25-35 $\mu\textrm{m}$) were packed into a HPLC column (150$\times$3.9mm). The selectivity and chromatographic characterization of the imprinted polymers were studied using pentoxifylline, caffeine, theophylline, theobromine as samples and acetonitrile as the mobile phase, Both imprinted polymers showed increased affinity for structural analogues. By using a mixture of caffeine-theophylline templates MIPs, good separations of caffeine, theobromine and theophylline were obtained, and pentoxifylline and caffeine were partly separated.