• Title/Summary/Keyword: Molecular Characterization

Search Result 3,075, Processing Time 0.031 seconds

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • Lee, Jeong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF

Characterization of Base Paper Properties on Coating Penetration

  • Kim, Bong-Yang;Douglas W. Bousfield
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • The influence of base paper properties and fiber type on coating penetration was studied in terms of characterization of coating holdout using two types of hand sheets as the base paper which were prepared from thermomechanical pulp (TMP) and hardwood bleached kraft pulp(KP) sized internally with alkyl ketene dimmer (AKD). Laboratory rod draw down coater was used for surface sizing and coating application. Characterization of coating penetration was done by measuring the roughness of the backside of coating layer. The backside of the coating was exposed by dissolving the fibers in a solution of cupriethylenedimine (CEO). Data show that internal sizing of base paper is effective and surface sizing is more effective to prevent coating penetration. Comparing between the two types of base papers, backside roughness of coating layer of TMP sheet is much larger and sizing is more effective to reduce coating penetration than those of KP sheet. From the result of water absorption and sizing degree after surface sizing, it seems that internal sizing slows down molecular diffusion much more than capillary penetration, but surface sizing reduces the capillary penetration. Furthermore, predominant mechanism of water into paper of TMP sheet seems to be capillary penetration, but it is molecular diffusion in the case of KP sheet.

Molecular Characterization of Brassica Pollen Allergen

  • Toriyama, Kinya;Okada, Takashi
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.97-99
    • /
    • 2000
  • Allergy to Brassica pollen has been reported in some countries. We have cloned a cDNA encoding a Brassica pollen allergen, Bra r 1. Bra r 1 belongs to a new family of $Ca^{2+}$-binding proteins, characterized by the presence of two EF-hand calcium-binding domains. Bra r 1 was detected in the tapetum, microspores, pollen coat and pollen tubes, indicating Bra r 1 is involved in pollen pistil interaction and pollen tube growth. We have engineered the hypoallergenic mutants of Bra r 1 for immunotherapy. Here we describe the review of molecular characterization of Bra r 1.

  • PDF

Purification and characterization of glutamine phosphoribosylpyrophosphate amidotransferase from streptomyces tubercidicus (Streptomyces tubercidicus에서 glutamine phosphoribosylpyrophosphate amidotransferase의 정제 및 특성)

  • 하영칠;유진철
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 1991
  • Glutamine phosphoribosylpyrophosphate amidotransferase of Streptomyces tubercidicus was purified and characterized. Molecular weight of the isolated enzyme was determined to be approximately 230,000 and was composed foru identical subunits having a molecular weight of 58,000. This enzyme was strongly inhibited by AMP while considerably inhibited by ATP and GTP. Inhibition effect of enzyme activity by AMP was antagonized by increased concentration of substrate, PRPP, and metal ion (especially, $Mg^{++}$) was essential in both catalytic activity and nucleotide inhibition of this enzyme. Therefore, it was confirmed that end product inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by adenine participated in the regulation of tubercidin biosynthesis from Streptomyces tubercidicus.s.

  • PDF

Molecular Characterization of Burkholderia Strains Isolated from Rice Cultivars (Oryza sativa L.) for Species Identification and Phylogenetic Grouping

  • Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Kwon, Soon-Wo;Song, Myung-Hee;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1005-1010
    • /
    • 2008
  • The genus Burkholderia consists of extremely versatile bacteria that occupy diverse niches and are commonly encountered in the rhizosphere of crop plants. In this study, we characterized three plant growth promoting strains assigned as Burkholderia sp. using biochemical and molecular characterization. The Burkholderia spp. strains CBMB40, CBPB-HIM, and CBPB-HOD were characterized using biochemical tests, BIOLOG carbon substrate utilization, fatty acid methyl ester analysis, analysis of recA gene sequences, and DNA-DNA hybridization. The results from these studies indicated that the strains CBMB40, CBPB-HIM, and CBPB-HOD can be assigned under Burkholderia vietnamiensis, Burkholderia ubonensis, and Burkholderia pyrrocinia, respectively.

Isolation and Characterization of a Antimicrobial Compound from Bacillus coagulans

  • Abada, Emad Abd El-moniem
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • A bacterium strain called Bacillus coagulans was isolated from an industrial wastewater drainage and selected for its antimicrobial activities against bacteria and fungi. Characterization studies strongly suggested that this strain is Bacillus coagulans. Antimicrobial activity was found against gram-positive, gram-negative bacteria and yeast strain. Maximal activity was observed after 24 h when incubated at $30^{\circ}C$ and pH 8. The activity was found to be stable at $75^{\circ}C$ for 30 min and at pH range of 2-12. Analysis of the antimicrobial compound by SDS-PAGE suggested a molecular mass of approximately 7.5 KDa. The substance was characterized as a bacteriocin, because of its proteinaceous nature and low molecular weight. Our bacteriocin could potentially be used as a food preservative, because of its thermostable property and broad antimicrobial spectrum.

Characterization of a Novel Lipopolysaccharide Biosurfactant from Klebsiella oxitoca

  • Kim, Pil;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • The chemical, physical, and emulsifying properties of BSF-1, which is an extracellular lipopolysaccharide biosurfactant produced by Klebsiella oxytoca strain BSF-1, were studied. BSF-1 was found to be composed mainly of carbohydrate and fatty acids. The average molecular weight was $1,700{\sim}2,000 kDa$. The polysaccharide fraction contained L-rhamnose, D-galactose, D-glucose, and D-glucuronic acid at a molar ratio of 3:1: 1:1. The fatty acid content was 1.1 % (w/w) and consisted mainly of palmitic acid (C16:0), 3-hydroxylauric acid (3-OH-C12:0), and lauric acid (C12:0). In terms of thermal properties, BSF-1 was revealed to have inter- and intra-molecular hydrogen bonds. The hydrodynamic volume (intrinsic viscosity) of BSF-1 was 22.8dL/g. BSF-1 could be maintained as a stable emulsion for 48 h through a low-level reduction in surface tension. The optimal emulsification temperature was $30^{\circ}C$. Emulsification by BSF-1 was efficient at both acidic and neutral pH values.

Purification and Characterization of a Collagenolytic Protease from the Filefish, Novoden modestrus

  • Kim, Se-Kwon;Park, Pyo-Jam;Kim, Jong-Bae;Shahidi, Fereidoon
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • A serine collagenolytic protease was purified from the internal organs of filefish Novoden modestrus, by ammonium sulfate, ion-exchange chromatography on a DEAE-Sephadex A-50, ion-exchange rechromatography on a DEAE-Sephadex A-50, and gel filtration on a Sephadex G-150 column. The molecular mass of the filefish serine collagenase was estimated to be 27.0 kDa by gel filtration and SDS-PAGE. The purified collagenase was optimally active at pH 7.0-8.0 and $55^{\circ}C$. The purified enzyme was rich in Ala, Ser, Leu, and Ile, but poor in Trp, Pro, Tyr, and Met. In addition, the purified collagenolytic enzyme was strongly inhibited by N-P-toluenesulfonyl-L-lysine chloromethyl ketone (TLCK), diisopropylfluorophosphate (DFP), and soybean trypsin inhibitor.

Bud sports in the popular mulberry cultivar, Victory-1 and their characteristics

  • R. Ravi Kumara;G. P. Mohan Kumar
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.78-85
    • /
    • 2024
  • Bud sport (bud mutation) is a valuable source for existing new genotypes in mulberry (Morus spp.) as well as critical materials for studying the molecular mechanisms underlying essential traits. Thus, identification, collection, characterization, and conservation of such natural variants are prerequisites for enhancing the mulberry genetic resource in the germplasm. In this context, we identified and characterized three bud sports (VBS-1, VBS-2, and VBS-3) of a popular mulberry cultivar, Victory-1 (V-1). These bud sports are morphologically, anatomically, and genetically more distinct from their mother plant, Victory-1. Moreover, these bud sports display lower growth and yield potential. Furthermore, these showed remarkably lower 2C DNA contents of 0.74 pg (VBS-1), 0.78 pg (VBS-2), and 0.76 pg (VBS-3), when compared to their mother plant V-1 (2C = 0.81 pg). On the other hand, molecular characterization between the bud sports and their mother plant revealed the existence of genetic variation due to the natural bud mutation that occurred in the mulberry cultivar Victory-1.