• Title/Summary/Keyword: Molding conditions

Search Result 556, Processing Time 0.019 seconds

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures (TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구)

  • Hwang, In-Hyuck;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

The Study on Filling Factor of Radiation Shielding Lead-free Sheet Via Screen Printing Method (스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구)

  • Kang, Sang-Sik;Jeong, Ah-Rim;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.713-718
    • /
    • 2018
  • In many previous studies, monte carlo simulation is used to produce lead-free shielding sheet, and the possibility of radiation shielding capability and weight reduction is presented. But it is difficult to simulation for binder and micro-pores because of In fact it does not provide sufficient information necessary for the commercialization process. Therefore, in this paper, the results of radiation shielding capability corresponding to filling factor was presented by using the screen printing method to provide information on gel-paste required for the commercialization process. In this study, the geometric setup for evaluate of radiation shielding ability was designed to comply with IEC 61331-1:2014 and KS A 4025. In addition, radiation irradiation conditions were 100 kVp filtered with 2.0 mmAl total filtration was applied according to KS A 4021 standard. In this study, Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$ and $WO_3$ $2631{\mu}m$ were analyzed based on ten value layer. Additionally, the filling factor was analyzed as $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%. However, in the case of applying low-temperature high-pressure molding in the future, it is expected that the radiation shielding capability can be sufficiently improved by reducing the porosity while increasing the filling factor.

A study on the way to improve strength of LTV's FRP structures by optimizing laminated structure (전술차량 FRP 구조물 적층 구조 최적화를 통한 강도개선 방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.468-476
    • /
    • 2019
  • This paper presents the means of improving the strength of LTV's FRP structure for resolve and prevent quality problems. LTV secures enough kerb weight by applying FRP materials at hood and rear van assembly. However, because of FRP's inherent limitations, many initial quality problems such as crack at connections have occurred. Moreover, hood assy' is concerned about fall of endurance, because hood assy' have operated in abnormal condition. Therefore, this study executes lamination structure optimizations of FRP structure for improving bending strength. As a results, hood and rear van's bending strength at connections is improved 8.1 times and 1.5 times, respectively. Also hood assy's plate secures endurance life and improve 1.7 times of critical load about abnormal operating conditions through 1.4 times improvement of bending strength.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.

A Study on the Release Characteristics During Wafer-Level Lens Molding Using Thermosetting Materials (열경화성 소재를 사용한 웨이퍼 레벨 렌즈 성형 중 이형 특성에 관한 연구)

  • Park, Si-Hwan;Hwang, Yeon;Kim, Dai-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.461-467
    • /
    • 2021
  • Among the defect factors that can occur when a wafer-level lens is molded using a thermosetting material, the mold sticking problem of a molded lens during the release process can damage the molded substrate and deform the substrate at the wafer level. An experiment was conducted to examine the factors affecting the demolding force in the lens forming process. The demolding force was examined according to the coating material of the molds. The mold was surface-treated with ITO and Ti, followed by plasma treatment in an O2 atmosphere. A DLC coating was then performed, and the curing and releasability were examined. A coating method for the pull-off experiment was selected based on the results. To measure the demolding force according to the curing process conditions, a method of curing at a constant pressure and a method of curing at a constant position were applied. As a result, the TiO2 surface treatment reduced the release force. When cured by controlling the location, curing shrinkage can reduce the adhesion energy of the interface during curing, resulting in better demolding.

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.