• Title/Summary/Keyword: Molding Conditions

Search Result 553, Processing Time 0.029 seconds

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

A Study on Molding Condition of Aspheric Glass Lenses Using Design of Experiments Slow Cooling Condition

  • Cha, Du-Hwan;Lee, June-Key;Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Park, Yong-Pil;Jeong, Jong-Guy;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.464-464
    • /
    • 2008
  • This study investigated the slow cooling conditions in the molding of aspheric glass lens using the design of experiment (DOE). The optimization of the slow cooling conditions with respect to the form accuracy (PV) of the molded lens were ascertained by employing full factorial design. As a result of the analysis of variance (ANOVA) and P-value (significance level), it was verified that slow cooling rate represent the most significant operative variables that affect the corresponding response variable. In the optimum condition, the molded lens show 82% of transcription ratio.

  • PDF

Properties of Flexural Strength of Extrusion Molding Concrete Panel According to the Curing Conditions (양생조건에 따른 압출성형콘크리트 패널의 휨강도 특성)

  • Jung, Eun-Hye;Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Park, Sun-Gyu;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.441-444
    • /
    • 2006
  • Extrusion molding concrete panel is cured two times, that is the steam curing at atmospheric pressure and a high-pressure steam curing(autoclaving). Steam curing at atmospheric pressure is done before autoclaving and to acquire the proper strength for treat in process. Though this curing is the important factor on the quality of product and the speed in manufacturing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. This study is to investigate the properties of specimen according to variation of curing conditions in the coring chamber such as laboratory scale, pilot plant, and commercial plant. As estimating, in case of steam curing at atmospheric pressure to make extrusion molding concrete panel, moisture curing is better than dry curing and the desirable maximum temperature in curing chamber is about $50^{\circ}C$.

  • PDF

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (미성형 방지를 위한 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.33-37
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (사출성형용 지능형 미성형 방지 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.402-405
    • /
    • 2001
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

  • PDF

Injection Molding of Vertebral Fixed Cage Implant

  • Yoo, Kyun Min;Lee, Seok Won;Youn, Jae Ryoun;Yoon, Do Heum;Cho, Yon Eun;Yu, Jae-Pil;Park, Hyung Sang
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • A vertebral cage is a hollow medical device which is used in spine forgery. By implanting the cage into the spine column, it is possible to restore disc and relieve pressure on the nerve roots. Most cages have been made of titanium alloys but they detract the biocompatibility. Currently PEEK (polyether ether ketone) if applied to various implants because it has good properties like heat resistance, chemical resistance, strength, and especially biocompatibility. A new shape of vertebral cage is designed and injection molding of PEEK is considered for production. Before injection molding of the cage, it is needed to evaluate process conditions and properties of the final product. Variables affecting the shrinkage of the cage are considered, e.g., injection time, packing pressure, mold temperature, and melt temperature. By using the numerical simula-tion program, MOLDFLOW, several cases are studied. Data files obtained by MOLDFLOW analysis are used for stress anal-ysis with ABAQUS, and shrinkage and residual stress fields are predicted. With these results, optimum process conditions are determined.

A study on gas vent control of injection mold for the production of precision medical device parts (정밀 의료기기 부품 생산을 위한 사출금형의 가스벤트 제어에 관한 연구)

  • Lee, Jeong-Won;Son, Min-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.34-41
    • /
    • 2020
  • Typical characteristics of medical device parts are that they can not be reused and there are many disposable products. Therefore, there is a need for an injection molding machine having excellent repeatability of molding conditions and a precision injection mold for mass production. Recently, the performance of an injection machine has made a remarkable evolution compared to the past. However, defects such as short-shot, flash, weld line, gas burning, warpage, and deformation, which are typical defects, still do not disappear at all. This is due to the lack of gas ventilation from the product cavities, even if the gas is smoothly vented from the sprue and runner of the mold. For this reason, the internal pressure of the cavity rises and is directly connected to the quality defects. In this study, an active gas vent system was designed to prevent defects due to trapped gas in the cavity. Since it can be easily adjustable in response to the molding conditions and the mold temperature changes, it is expected to improve productivity due to the reduction of the defective ratio.

Investigation the part shrinkage in injection molding for glass fiber reinforced thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo Jung-Hyuk;Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.159-165
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts for PBT (polybutylene terephthalate), PC (polycarbonate),and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher Injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkage of both PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

  • PDF

Quality and Sensory Evaluation of Whole Soybean Flour Tofu Prepared from various Processing Conditons (가공조건에 따른 전지대두분 두부의 품질 및 관능평가)

  • 김주영;김준하;김종국;문광덕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.455-459
    • /
    • 2001
  • Tofu (soybean curd) was made with whole soybean flour (WSF, 420 mesh) by various processing conditions of water addition ratio, heating time, coagulation temperature, molding pressure and 0.3% of mixed coagulant (CaSO₄:GDL=50:50(w/w)). Yield content of WSF-tofu was the highest in processing condition of 85℃ coagulation temperature, 10 times water addition, 5min. heating time and 25.00 g/㎠ molding pressure. As the increase of the water addition ratio from 8 to 14 times (water:WSF, v/w), Hunter's L and a values were increased. Raising of heating time (100℃, 1, 5, 10 and 15 min), a and b value were increased. Textural properties of WSF-tofu were significantly affected by coagulation temperature (75, 80, 85 and 90℃). Hardness was increased, but adhesiveness and cohesiveness were decreased. heating time was influenced on harness of WSF-tofu, but water addition ratio was not affected on hardness of WSF-tofu. Increasing of molding pressure (16.83, 25.00, 33.22 and 41.67 g/㎠, 1 hr) was resulted from a increased hardness, gumminess and chewingss of tofu, but adhesiveness was addition ratio, 5 min heating time and 25.00 g/㎠ molding pressure recorded the highest score in sensory evaluation test.

  • PDF

The Optimization of Injection Molding System Using Axiomatic Approach (공리적 개념을 적용한 사출성형 시스템의 최적설계)

  • Kim, Jong-Hun;Lee, Jong-Soo;Cha, Sung-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.