• Title/Summary/Keyword: Mold industry

Search Result 363, Processing Time 0.027 seconds

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Springback tendency with the variable blank holding force in the drawing process of the UHSS (초고강도강판 드로잉 성형에서 가변 블랭크 홀딩력에 의한 스프링백 경향)

  • Kwak, Jung-Hwan;Jung, Chul-Young;Kim, Se-Ho;Song, Jung-Han
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2018
  • The production of the automotive parts with the ultra high strength steel usually involves large amount of springback as well as fracture during the cold stamping process. Variable blank holding force(VBHF) can be used as one of the effective process parameters to reduce the springback amount with achieving better condition of formability. In this paper, VBHF with respect to the punch stroke is applied to the stamping process of the front side rear lower member for reducing the springback amount. From the analyses with constant blank holding force(CBHF), 24 kinds of VBHF conditions are utilized to investigate the springback tendency. It is noted that springback can be effectively reduced when BHF is increased near the bottom dead center because VBHF provides the tensile force to the blank with an adequate level of deformation without fracture.

A study on the minimization of deformation by milling of plate-shaped parts (판형 부품의 밀링 가공에 의한 변형 최소화에 대한 연구)

  • Lee, Min-Gu;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • Plate-shaped works are one of the materials that can be applied to the entire industry due to their various shapes and sizes. Plate-shaped parts workpieces are thin and wide, and when processing is completed, they are often bent or deformed in various directions, making it difficult to produce normal products. In particular, this study intends to study the processing deformation and distortion of plate-shaped parts fastened to the jig during milling processing. In this study, a method for preventing deformation occurring in plate-shaped parts was derived through jig element change and CAE analysis, and this was applied to actual processing to produce products with stable dimensions. Through a finite element analysis experiment, it was found that installing two supports on the back of the plate-shaped part results in minimal deformation and the optimal distance between the two supports is 150 mm. Through this experiment, when processing a thin plate product, a support was installed in a direction opposite to the cutting force applied to the thin plate to prevent deformation of the product, thereby improving defects.

A study on the change of thickness according to material change of water purifier cold and hot water tank cylindrical drawing products (정수기 냉온수 탱크 원통형 드로잉 제품의 재질 변화에 따른 두께 변화에 관한 연구)

  • Jang, Eun-Jeong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.13-18
    • /
    • 2021
  • In plate forming technology, cylindrical drawing process is widely used in industry due to technological development. In this study, we used stainless steel 3042B and stainless steel 304J1, which are the most commonly used materials in the production of cold and hot water tanks for water purifiers, among cylindrical drawing products. Under the same conditions, the thickness of the sidewall of the product formed by drawn experiment was studied. As a result of the experiment, the bottom thickness of stainless steel 304J1 was considered to be thick. It is judged that the defect rate can be reduced by changing the breaking phenomenon of the floor surface of the cold and hot water bottles to the material of stainless steel 304j1. Stainless steel 304 2B material shows a sharp change in thickness from punch corner R to sidewall position, while stainless steel 304J1 material showed a uniform change from punch corner R to sidewall position. Stainless steel 304J1 material is considered to improve the clamping of the product in the process of extracting the product after hand drawing. The appearance of stainless steel 3042B products is considered to produce more wrinkles in the flange, which exerts greater tensile force on the sidewall during molding, resulting in uneven sidewall thickness.

Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser (High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리)

  • Hwang, Hyun-Tae;Song, Hyeon-Soo;Kim, Jung-Do;Song, Moo-Keun;Kim, Young-Kuk
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Monitoring and machinability evaluation in high-speed machining of high hardness steel(SKD11) (고경도강(SKD11)의 고속가공에서 가공성 평가 및 감시)

  • 김전하;김경균;강영창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.987-990
    • /
    • 2000
  • In modern manufacturing industry such as aerospace, vehicle and die/mold industry, the high hardness malarial which is remarkable in aspects of durability is effectively used. The high-speed and precision machining technology has been applied in these fields. In this study, efficient sensors in high-speed machining by observing similar tendency through comparing cutting force with AE signal, gap sensor signal and accelerometer signal are selected, and machinability of high-speed machining is experimentally evaluated. We performed a basic research for sensing system construction to monitor a machine tool and machining condition.

  • PDF

A Framework of Web-based Inventory System using a RFID in Plastic Injection Molding Industry (플라스틱 사출산업의 RFID를 이용한 웹기반 재고관리시스템 프레임웤)

  • Lim, Seok-Jin;Song, Jae-Ho;Ko, Young-Uk;Park, Byong-Tae
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.189-197
    • /
    • 2010
  • Recently, industrial business environments have rapidly changed and face severe competitive challenges. The effective inventory system enables to product and deliver the products quickly for meeting due date of customer's order in this environment. This study have developed a web-based inventory system framework using RFID for a plastic injection molding industry. The system analysis inventory problem issues such as inventory planning, warehouse assignment. In this study, web-based inventory system using Java language is proposed and implemented. As the result of implementation of the system, we expected that it manages to inventory planning continually and systematically.

  • PDF

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik;Yu, Gui-Duk;Shin, Kyu-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Numerical Analysis of Micro-pattern Filling with Gas Dissolution by Injection Molding Process (가스 용해를 고려한 금형내압제어 사출성형공정의 마이크로패턴 충전 해석)

  • Park, Sung Ho;Yoo, Hyeong Min;Lee, Woo Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.21-27
    • /
    • 2014
  • The injection molding process has several advantages enabling it to produce large quantities of molded plastic products using a repetitive process. In recent years, it has been necessary to develop an injection molding process with micro/nano-sized patterns for application to the semiconductor industry and to the bio/nano manufacturing industry. In this study, we apply gas pressure to the inside of a mold and consider the gas dissolution phenomenon for a resin filling into a micro pattern with a line structure. Using numerical analysis, we calculate the filling ratio with respect to time for various internal gas pressures and various aspect ratios of the micro-patterns.