• Title/Summary/Keyword: Mold Wall Temperature

Search Result 64, Processing Time 0.021 seconds

A Study of a Simultaneous Filling and Solidification During Casting Process (충전과 상변화 현상을 포함한 주조과정에 대한 연구)

  • Im, lk-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.987-996
    • /
    • 1999
  • An algorithm for modeling the filling of metal into a mold and solidification has been developed. This algorithm uses the implicit VOF method for a filling and a general implicit source-based method for solidification. The model for simultaneous filling and solidification is applied to the two-dimensional filling and solidification of a square cavity. The effects of the wall temperature and gate position on the solidification are examined. The mixed natural convection flow and residual flow resulting from the completion of a filling are included in this study to investigate the coupled effects of the filling and natural convection on solidification. Two different filling configurations (assisting flow and opposite flow due to the gate position) are analysed to study the effects of residual flow on solidification. The results clearly show the necessity to carry out a coupled filling and solidification analysis including the effect of natural convection.

Implementation of an simulation-based digital twin for the plastic blow molding process (플라스틱 블로우몰딩 공정의 해석기반 디지털 트윈 구현)

  • Seok-Kwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Blow molding is a manufacturing process in which thermoplastic preforms are preheated and then pneumatically expanded within a mold to produce hollow products of various shapes. The two-step process, a type of blow molding method, requires the output of multiple infrared lamps to be adjusted individually, so the process of finding initial conditions hinders productivity. In this study, digital twin technology was applied to solve this problem. A blow molding simulation technique was established and simulation-based metadata was generated. A response surface ROM (Reduced Order Model) was built using the generated metadata. Then, a dynamic ROM was constructed using the results of 3D heat transfer analysis. Through this, users can quickly check the product wall thickness uniformity according to changes in the control value of the heating lamp for products of various shapes, and at the same time, check the temperature distribution of the preform in real time.

Improvement in Mechanical Properties of AZ91D Mg-Alloy through Thixomolding Process (틱소몰딩 공정을 이용한 AZ91D Mg합금의 기계적 성질 증대)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.593-600
    • /
    • 2012
  • Thixomolding of Mg-alloy is a semi-solid injection molding process utilizing thixotropic phenomenon. Using this process, higher strength, thinner wall section and tighter tolerance without porosity are obtained. It has been applied for production of near-net-shape magnesium component. To design optimal thixomolding process of Mg-alloy part, molding conditions such as slurry temperature, mold temperature and injection time should be determined properly. Selection of these parameters has been dependent upon engineers' experience and intuitiveness. In this paper, to improve mechanical properties of the thixomolded product, optimal selection of process variables such as injection velocity, barrel temperature and die temperature in the process has been studied through microstructural analysis and Taguchi method. Performance of the process is verified through experiments.

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.

Comparison of Hygrothermal Performance between Wood and Concrete Wall Structures using Simulation Program

  • Yu, Seulgi;Chang, Seong Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.283-293
    • /
    • 2016
  • Owing to an increase in the air tightness of recent buildings, the natural ventilation rate was significantly lowered and the removal of accumulated moisture became difficult in these buildings. The hygrothermal performance of these buildings should be carefully considered to provide comfortable indoor environment by removing the moisture condensation risk and the mold growth potential. In this study, hygrothermal performance of two selected wall structures was investigated based on WUFI simulation program. The results displayed that the indoor temperature had impact on the moisture accumulation in the insulation layer for both modeled walls, showing that lower indoor temperature resulted in higher moisture accumulation, especially in the wood frame structure. Also, the yearly moisture accumulation profile exhibited a downward shift throughout the year by adding a vapour retarder with a lower sd-value. In addition, both of the two walls have condensation risk in winter, due to low temperature level. The wood frame structure has a bigger fluctuation and higher condensation risk than the concrete structure.

An Optimum Design of Replication Process to Improve Birefringence, Radial-Tilt and Land-Groove Structure in DVD-RAM Substrates (DVD-RAM 기판의 복굴절, Radial-Tilt 및 전사성 향상을 위한 사출압축성형공정 최적화)

  • Gang, Sin-Il;Seong, Gi-Byeong;Lee, Nam-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.637-643
    • /
    • 2002
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was fecund that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

Assessment of Utilization of Auxiliary Heating Device for Prevention of Condensation in Built-in Furniture in Winter (겨울철 공동주택에서 붙박이장 내 보조난방장치를 활용한 결로 저감 효과 평가)

  • Lee, Hyun-Hwa;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.99-106
    • /
    • 2017
  • Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Most of all, occupants in residential buildings has suffered from property damages due to the condensation and mold of built-in furniture. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. The aim of paper is to analyze the characteristics of adjacent area around built-in furniture's condensation problem and the thermal environment around the built-in furniture in winter through the field measurements at apartment buildings. In this research, the thermal conditions and surface temperature around the built-in furniture were measured during winter season. In this research, we analyzed thermal conditions for built-in furniture which were applied and not applied auxiliary heating device. In results, it is important to consider increasing surface temperature for using heater and decreasing absolute humidity due to the occupants' behavior around built-in furniture for preventing condensation.

Experimental Study of Flow and Solidification Simulation for Thin Wall Stainless Steel Castings (박육 스테인리스 주강에 대한 유동 및 응고해석의 실험적 고찰)

  • Choi, Hak-Kyu;Park, Heung-Il;Jeong, Hae-Yong;Bae, Cha-Hurn;Choi, Byung-Kang
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.344-353
    • /
    • 2000
  • In order to find out the casting conditions of the thin wall stainless steel exhaust manifold for automobile, the melt flow and solidification behavior simulated by the Z-CAST program were evaluated, and experimental casting result on the test casting and exhaust manifold of SSC13 alloy were investigated. From the results of this study, it was shown that the calculated results on fluid flow were in good agreement with practical thin wall test castings under the same casting conditions, as pouring metal is austenitic stainless steel(SSC13) and pouring temperature is 1575, 1630, and $1665^{\circ}C$ respectively. That calculated result with designed thin wall exhaust manifold was predicted filling up into the mold cavity, and practical casting was sound. The solidification simulation was predicted shrinkages at the bosses for original exhaust manifold, and designed it without bosses was predicted no defect. Therefore practical exhaust manifold casting was sound and in good agreement with calculated solidification results.

  • PDF

A Study on Warpage of Bobbin Molded by Injection Molding Process (Bobb in 성형품의 변형에 관한 연구)

  • 김병곤;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.811-814
    • /
    • 2001
  • Warpage analysis of bobbin, molded by injection molding process was performed. Concerned with a mold design, cooling system was designed based on Taguchi method, the distance between cavity wall and cooling channel was most influent factor amongst four design variables like an inlet temperature of coolant, a coolant flow rate, a diameter of cooling channel, and the distance between cavity wall and cooling channel. Optimal packing processes to reduce the warpage of molded part was analyzed based on the response surface method by considering holding pressure. Their optimal processing conditions were 9.4 seconds, 5.3 seconds, 15.2 seconds, and 85MPa, respectively.

  • PDF

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.