• 제목/요약/키워드: Mold Flow

검색결과 480건 처리시간 0.021초

파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구 (A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process)

  • 이춘규;민경호
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E) (Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E))

  • 권홍규
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석 (Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs)

  • 정창규;변현중;정성욱;남현욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.319-324
    • /
    • 2001
  • A finite element model for the process of squeeze casting for metal matrix composites (MMCs) in cylindrical mold is developed. The fluid flow and the heat transfer are the fundamental phenomena in the squeeze casing process. To describe heat transfer with solidification of molten aluminum, the energy equation in terms of temperature and enthalpy are applied to two dimensional axisymmetric model which is similar to the experimental system. And one dimensional flow model is employed to simulate the transient metal flow. The direct iteration technique was used to solve the resulting nonlinear algebraic equations. A computer program is developed to calculate the enthalpy, temperature and fluid velocity. Cooling curves and temperature distribution during infiltration and solidification are calculated for pure aluminum. The temperature is measured and recorded experimentally. At two points of the perform inside and one point of the mold outside, thermocouple wire are installed. The time-temperature data are compared with the calculated cooling curves. The experimental results show that the finite element model can estimate the solidification time and predict the cooling process.

  • PDF

폐기물 처리시설에서의 악취 및 환기에 관한 연구 (A study on odor and ventilation in waste treatment facilities)

  • 서병석;전용한
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석 (3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 1999
  • 섬유로 강화된 열가소성 복합재의 성형과정 중에는 유동특성에 미치는 금형내 충전패턴의 제어나 섬유배향 및 섬유함유율과 같은 성형공정 인자들의 영향을 예측하는 것이 필요하다. 본 연구에서는 등온상태에서 두께가 얇거나 두꺼운 성형품을 압축성형하는 경우에 발생하는 유동선단과 압력분포, 속도구배 등을 예측함을 목적으로 한다. 이때 복합재는 비압축성 뉴턴유체로 하였으며, 성형공정 변수들에 미치는 미끄럼 지배상수 $\alpha$와 점성비 $\zeta$의 영향에 대해서 고찰한 내용을 보고한다.

  • PDF

스마트폰 카메라용 VCM housing 사출 성형 해석 (Injection molding analysis of smart phone camera VCM housing)

  • 윤선진;조용무
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.13-18
    • /
    • 2017
  • The injection molding analysis of VCM (Voice Coil Motor) housing for smart phone cameras were performed. We conducted the analysis in terms of injection molding pressure, the formation of weld lines, flow marks, and flow patterns. The goal of the analysis was targeted for the prediction of the optimal gate locations. Because the quality of VCM housing is strongly dependent on the precise control of the camera lens by its nature, we focused on the lens guiding lanes in the VCM housing. We first calculated the maximum injection molding pressure in terms of the filled volumes. The injection molding pressure were calculated within 146MPa at about 90% volume filled. We also investigated the possibility of the occurrence of design-related defects such flow marks, weld lines. Filling patterns regarding the design of the gate locations were delineated to find the weld lines. Throughout the simulations, the final deformations of the lens guiding lanes for the VCM housing were calculated. The deformations distribute ranging from $0.5{\mu}m$ to $2.50{\mu}m$, which were used to find the optimal design of the gates.

경사 돌기 표면의 젖음 특성 평가 (Hydrophobicity Evaluation of Oblique Micro-asperities Structures)

  • 백승익;김태완
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.56-60
    • /
    • 2023
  • In this study, we evaluate the anisotropic flow of droplets according to the directionality of asperities. We manufacture a mold with an inclined hole by adjusting the jig angle using a high-power diode laser. Using the manufactured mold, we prepare specimens for wettability studies by the micro molding technique. We fabricate twelve kinds of surfaces with micro-asperities inclined at 0°, 15°, 30°, and 45° for asperity pitches of 100 ㎛, 200 ㎛, and 300 ㎛. We evaluate the static and dynamic behaviors of the droplets as a function of the asperities pitch and inclination angles. The anisotropic effect increases as the pitch increases between asperities, and the anisotropic flow characteristics increase as the inclination angle of the asperities increases. On the surface with hole pitches of 100 ㎛ and 200 ㎛, the contact angle of the droplet shows high hydrophobicity at approximately 160°, but on the surface with the 300-㎛ hole pitch, the contact angle is approximately 110°, indicating that the hydrophobic effect rapidly reduces. Additionally, when the inclination angle of the asperities is approximately 30°, the left and right contact angle deviations of the droplet are the lowest, showing that the roll-off angle is relatively low.

드럼세탁기용 커플링 부품 다이캐스팅 금형개발 (Development of Mold for Coupling Parts for Drum Washing Machine)

  • 박종남;노승희;이동길
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.482-489
    • /
    • 2020
  • 본 연구의 목적은 소비자 및 현장의 니즈에 부합하면서 다이캐스팅으로 생산할 수 있는 커플링 부품을 개발하고자 하였으며, 유동 및 응고해석을 기반으로 다이캐스팅 금형 설계, 제작, 및 사출조건 최적화 도출을 실시하였고 사출된 제품의 측정 및 평가를 수행하였다. 유동해석을 통하여 캐비티 내부가 100 % 충진되기 위한 적정한 사출조건은 용탕의 온도 670 ℃, 사출속도 1.164 m/s, 충진압력 6.324~18.77 MPa로 분석되었다. 또한, 응고율이 69.47 %일 때 4개의 캐비티 모두에서 100 %에 근접하는 응고가 발생됨을 알 수 있었으며, 이를 기초로 시사출 조건설정 등에 응용하였으며 그 결과 사이클 타임은 약 6.5초로 도출되었다. 다이캐스팅으로 시사출된 제품의 표면 및 내부의 품질 검사를 수행한 결과 성형불량 및 기공 등의 결함은 전혀 발견되지 않았으며, 주요 개소의 치수를 측정한 결과 모든 항목에서 허용하는 공차 이내의 값을 보였다. 또한, 게이트로부터 약 45 mm 이격된 곳의 평균 경도값은 97.7(Hv)로 나타나는 등 전체적으로 양호한 치수 및 품질의 부품을 제작할 수 있었다.

국내 주택에서 물 피해 유형에 따른 부유곰팡이 농도 수준 평가 및 동정 분석 (Assessment of the level and identification of airborne molds by the type of water damage in housing in Korea)

  • 이주영;황은설;이정섭;권명희;정현미;서성철
    • 실내환경 및 냄새 학회지
    • /
    • 제17권4호
    • /
    • pp.355-361
    • /
    • 2018
  • Mold grows more easily when humidity is higher in indoor spaces, and as such is found more often on wetted areas in housing such as walls, toilets, kitchens, and poorly managed spaces. However, there have been few studies that have specifically assessed the level of mold in the indoor spaces of water-damaged housing in the Republic of Korea. We investigated the levels of airborne mold according to the characteristics of water damage types and explored the correlation between the distribution of mold genera and the characteristics of households. Samplings were performed from January 2016 to June 2018 in 97 housing units with water leakage or condensation, or a history of flooding, and in 61 general housing units in the metropolitan and Busan area, respectively. Airborne mold was collected on MEA (Malt extract agar) at flow rate of 100 L/min for 1 min. After collection, the samples were incubated at $25^{\circ}C$ for 120 hours. The cultured samples were counted and corrected using a positive hole conversion table. The samples were then analyzed by single colony culture, DNA extraction, gene amplification, and sequencing. By type of housing, concentrations of airborne mold were highest in flooded housing, followed by water-leaked or highly condensed housings, and then general housing. In more than 50% of water-damaged housing, the level of airborne mold exceeded the guideline of Korea's Ministry of Environment ($500CFU/m^3$). Of particular concern was the fact that the I/O ratio of water-damaged housing was greater than 1, which could indicate that mold damage may occur indoors. The distribution patterns of the fungal species were as follows: Penicillium spp., Cladosporium spp. (14%), Aspergillus spp. (13%) and Alternaria spp. (3%), but significant differences of their levels in indoor spaces were not found. Our findings indicate that high levels of mold damage were found in housing with water damage, and Aspergillus flavus and Penicillium brevicompactum were more dominant in housing with high water activity. Comprehensive management of flooded or water-damaged housing is necessary to reduce fungal exposure.

기하학적 균형을 갖춘 금형에서 발생하는 성형품의 충전 불균형에 관한 연구 (A Study on the Filling Imbalance in a Geometrically Balanced Injection Mold)

  • 구양;김병탁;정영득;한성렬;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.931-937
    • /
    • 2004
  • Simultaneous filling is a goal in plastic injection mold that has multi cavities. The moldings which have not been filled at the same time have undesired faults such as dimension inaccuracy, residual stress, law mechanical strength, etc. The best way to simultaneous fill is to be injected in a geometrically balanced runner system. In a general processing, however, in balanced runner system mold, filling imbalance would be observed in cavities. These phenomena result from molten polymer's characteristics and circumstances in balanced runner. In this study, the degree of filling imbalance (DFI) was defined for showing rate of filling imbalance in geometrically balanced injection mold that has 8 cavities. Before the main experiment, an injection molding simulation was conducted to know a pattern of filling imbalance with Moldflow software. There were somewhat differences between results of experiment and simulation about the filling imbalance. The reason for the difference was that the software have not concerned about a situation in a real flow channel. It was also investigated how the injection speed affected on filling imbalance in the experiment.