• Title/Summary/Keyword: Mold Analysis

Search Result 1,207, Processing Time 0.029 seconds

A Convergent Investigation on the thermal and stress analyses of CPU Cooler (CPU 쿨러의 열 및 응력 해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, the thermal and stress analyses were performed by applying a temperature condition of 100℃ at CPU cooler model. The value of heat flux value is shown to be the most at the lower rod area. The upper part becomes, the smaller the heat flow rate. The highest temperature is shown at the bottom of the CPU cooler model. Overall, the upper part becomes, the smaller the temperature becomes. Based on the temperature analysis, the thermal deformation caused by expansion, the deformation becomes smaller as the upper part of the overlapping plates. The great deformation happens at the bent area of the small rod as the lower part of model and the least deformation is shown at the lowest floor of model. In addition, the maximum thermal stress of 570.63 MPa happens at the floor below model. The stress is shown to decrease as the upper part of the overlapping plates becomes. But the stress is shown to increase somewhat at the middle part of model. By applying the study result on the thermal and stress analyses of CPU cooler, this study is seen to be suitable for the aesthetic convergence.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Lift (자동차 리프트 형상에 따른 내구성 해석을 통한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.281-286
    • /
    • 2019
  • To repair the underside of the car, a repairman has to enter under the car body. But this work can make it difficult for him to fix it and the injuries can occur. To solve these difficult problems, the developed equipment is the automotive lift. In this study, three kinds of lift models 1, 2 and 3 were designed and the material properties of the structural steel were applied. As the same load were applied under the same conditions on all models, the structural analyses were conducted. Models 2 and 3 were shown to have the structural deformation less than model 1. Also, models 2 and 3 were shown to be more stable than model 1 structurally. By utilizing the design data on a convergence research through durability analysis according to the configuration of automotive lift obtained on the basis of this result, the esthetic feeling can be shown by being converged onto the automotive repair equipment parts at actual life.

Blank Design of SPFH 590 Steel Sheet for Stamping of Center Hinge of Automotive via Analysis of Transfer Forming Process with Multi-Stages (다단 이송 성형 공정 해석을 통한 자동차 센터 힌지 성형용 SPFH 590 고강도 강판 블랭크 설계)

  • Ahn, Dong-Gyu;Song, Dong-Han;Sohn, Sang-Sik;Han, Gil-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.75-84
    • /
    • 2010
  • The aim of this paper is to design the blank shape of SPFH 590 high strength steel for stamping of the center hinge of automotive via numerical analyses and experiments for multi-stages transfer forming process. Three-dimensional elasto-plastic finite element analyses for the transfer forming process with six stages were performed using a commercial code AUTOFORM V4.2. The influence of the blank shape on the formability and the shape conformity were quantitatively examined through the FE analyses. From the results of the FE analysis, a feasible shape of the blank and the forming load were estimated. Stamping experiments were carried out using the proposed blank shape. The results of experiments were shown that the center hinge parts with the desired shapes can be manufactured successfully as the proposed blank shape is used. Through the comparison of the results of the experiments with those of the analyses, it was shown that the estimation of blank shape using the FE analysis is a proper methodology to create a feasible shape of the blank for the center hinge of automotive.

Molecular Phylogenetic Analysis of Botrytis cinerea Occurring in Korea (우리나라에 발생하는 잿빛곰팡이병균 Botrytis cinerea의 분자계통학적 유연관계)

  • Back, Chang-Gi;Lee, Seung-Yeol;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.42 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • Several isolates were collected from apple, pepper, strawberry, cucumber and tomato having typical gray mold symptoms. All the isolates were identified as Botrytis cinerea by using morphological characteristics and PCR-RFLP method. It was difficult to analyze the phylogenetic relationship of these isolates by using ITS region, HSP60 and G3PDH because these genes were highly homologous in their nucleotide in inter-species of B. cinerea and intra-species of genus Botrytis. However, phylogenetic analysis using combined sequences (RPB2, HSP60 and G3PDH genes) clearly showed that all isolate of B. cinerea were different from Botrytis spp. Furthermore, it was also confirmed that strawberry isolate was distantly related to apple, pepper, cucumber and tomato isolates that were closely related to each other in nucleotide level.

A Convergent Study on the Structural Analysis of Automotive Support Beam (자동차 서포트빔의 구조해석에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.169-173
    • /
    • 2020
  • The structural analysis was performed at this study when the axle was loaded by using a total of three automotive support beam models, models A, B and C. Comparing with three models A, B, and C, the equivalent stress is considered to be good for its durability because model C is less than the yield stress of the material. The maximum equivalent stresses happening at models A and B are 1.8 times and 2.5 times higher than the yield stress, respectively, indicating that the material is fractured. So, it does not seem to be efficient as a support beam. Model C can be applied efficiently to the improvement design of axle support beams in terms of durability compared to models A and B. The strength of automotive support beam can be evaluated by applying this research result to the automotive part. And it is seen that this study is adequate at the efficient design and aesthetic convergence practically.

Analysis on Thermal Transfer Characteristics of 50 kVA Mold-Transformer (50[kVA] 몰드변압기 권선부의 열전달 특성 해석)

  • 이현진;정중일;허창수;조한구
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presented the charcteristic of the thermal transfer in a 50[kVA] cast-resin dry type transformer. The conductivity of the primary winding composed were a Plenty of epoxy-resin ard a little of Cu was determined by that rating. Otherwise the conductivity of the secondary winding composed of a plenty of Cu and a little of epoxy-resin was determined by comparing the data of analysis using FEM method with those of temperature tests of the prototype cast-resin transformer. Based on the reults of the physical characteristics and the simulation by commercial using FEM method we established the prototype Model for this test. According to that Model, an analysis on variation of the temperature was discussed as a function of ambient temperature and velocities in the 50[kVA] cast-resin dry type transformer.

Design and Implementation of the Front part of an Agricultural Electric Vehicle based on Vacuum Forming using Computational Structural Analysis

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.45-51
    • /
    • 2021
  • In this paper, we propose a 3D design method of the vacuum forming method of the front part to improve the lightness and production efficiency of agricultural electric vehicles. For agricultural electric vehicles, lightness and production efficiency are more important than the strength of materials for collision protection. In this paper, we propose a vacuum forming design method that can replace complex machining processes such as laser machining, bending, and painting. The main purpose of this research is to improve product stability, productivity and convenience through 3D design of the front part and development of vacuum forming mold technology. Research procedure follows the 3D modeling of the front part using CATIA, finite element analysis for the structural stability using ABAQUS, manufacturing prototype for the investigation of the dimensions using 3D scanner and actual driving test under agricultural electric vehicle usage environment. The results verifies the proposed 3D design method of the vacuum forming method and are expected to be widely used by agricultural workers through the simplification of the production process of agricultural electric vehicles.

Convergence Study on Durability due to the Configuration of Front Under Cover of Off-road SUV (오프로드용 SUV의 프론트 언더커버 형상에 따른 내구성에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.149-154
    • /
    • 2019
  • This paper is to study the durability through structural analysis on the front undercover of SUV car for offroad. It was investigated which model became structurally best by analyzing three kinds of models which are similar to the configuration of undercover for the protection of the part under car body which has been used really. The models of undercover were designed through CATIA program and analyzed by using ANSYS program as three kinds of models A, B and C. Through the analysis results, model B was expressed to have the best durability as model B has the least equivalent stress and the longest fatigue life among three models. As the design data with the durability of undercover obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

A Convergent Study on Durability over the Exhaust Manifold Shape of Medium-sized Car (중형 자동차의 배기매니폴드 형상에 따른 내구성에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, the configurations of the two engine exhaust manifolds were designed. And the strengths and durabilities were analyzed through the structural analysis and natural frequency analyses of these models. As the result of structural analysis, the strength of model A is much better than that of model B because the maximum stress and deformation of model B are considerably greater than those of model A by more than 9 and 39 times, respectively. It can also be confirmed that model A has the durability better than model B because the maximum frequency of model A is greater than the natural frequency of model B and its maximum deformation is smaller than model B. The result of this study can be used to investigate the durability due to the exhaust manifold shape of medium-sized car without actual test. It also seems to be helpful in the aesthetic convergent design of small car muffler.

A Convergent Study on the Structural Analysis of Stabilizer at Light and Large Sized Cars (경차와 대형차에서의 스테빌라이저들의 구조해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • In this study, the torsional rigidity and durability of the stabilizer models with the hollow axis of light and large sized cars were compared and investigated each other. Model 1 was applied with the moment more than three times as much as model 2, but the maximum deformation of model 1 was seen to be about 2.6 times larger than that of model 2. Commonly, models 1 and 2 are seen to get the most stress at the neck of stabilizer bar link. Also, the maximum stress of model 1 was about 2.9 times larger than that of model 2. Model 1 at large car showed more than 20 times more deformed energy than model 2 at small car. Overall, it could be examined that the deformation energy of the bracket part on the side where the moment fixing the stabilizer bar was applied was greater than that of the stabilizer. It is thought that the analysis results in this study can be helped at the design of its convergent research as a durable component of the stabilizer at a light or large sized car.