• Title/Summary/Keyword: Mold Analysis

Search Result 1,206, Processing Time 0.034 seconds

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

A study on the brittle characteristics of fused silica header driven by piezoelectric actuator for laser assisted TC bonding (레이저 열-압착 본딩을 위한 압전 액추에이터로 구동되는 용융실리카 헤더의 취성특성에 관한 연구)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Semiconductor chip is bonded to the substrate by melting solder bumps. In general, the chip bonding is applied by a Reflow process or a Thermo-Compression(TC) bonding process. In this paper, we introduce a Laser Assisted Thermo-Compression bonding (LATCB) process to improve the anxiety of the existing process(Reflow, TC bonding). In the LATCB process, the chip is bonded to the substrate by irradiating a laser with a uniform energy density in the same area as the chip to melt only the solder bumps and press the chip with a Transparent Compression Module (TCM). The TCM consists of a fused silica header for penetrating the laser and pressurizing the chip, and a piezoelectric actuator (P.A.) coupled to both ends of the header for micro displacement control of the header. In addition, TCM is a structure that can pressurize the chip and deliver it to the chip and solder bumps without losing the energy of the laser. Fused silica, which is brittle, is vulnerable to deformation, so the header may be damaged when an external force is applied for pressurization or a displacement differenced is caused by piezoelectric actuators at both ends. On the other hand, in order to avoid interference between the header and the adjacent chip when pressing the chip using the TCM, the header has a notch at the bottom, and breakage due to stress concentration of the notch is expected. In this study, the thickness and notch length that the header does not break when the external force (500 N) is applied to both ends of the header are optimized using structural analysis and Coulomb-Mohr failure theory. In addition, the maximum displacement difference of the P.A.s at both ends where no break occurred in the header was derived. As a result, the thickness of the header is 11 mm, and the maximum displacement difference between both ends is 8 um.

ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF DENTAL AMALGAM IN ARTIFICIAL SALIVA (인공타액에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Kim, Yeoung-Nam;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.221-235
    • /
    • 1988
  • The purpose of this study was to observe characteristic properties through the polarization curves and EMPA images from 4 different types of amalgam obtained by using the potentiostats (EG & G PARC) & EPMA (Jeol JSM-35), to investigate the degree of corrosion of each phase of amalgam on the oxidation peak, and to identify corrosion products from the corroded amalgam by use of X-ray diffractometer(Rigaku). After each amlgam alloy and Hg were triturated as the direction of the manufacturer by means of the mechanical amalgamator(Shofu), the triturated mass was inserted into the cylindrical metal mold which was 12mm in diameter and 10mm in height and was condensed by means of routine manner. The specimen was removed from the mold and stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. Anodic polarization measurement was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution(pH6.8~7.0) and artificial saliva (pH6.8~7.0) at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen in electrolyte and the potential scan was begun at the potential of 100mV cathodic from the corrosion potential. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.64$cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). EPMA images on the determined oxidation peaks of each amalgam in artificial saliva were observed. X-ray diffraction patterns of each sample were recorded before and after polarization in artificial saliva (Aristaloy, Caulk Spherical, Dispersalloy and Tytin: at +770mV, +585mV, +8.10m V and +680m V respectively) by use of a recording diffractometer. Nickel filtered Cu $K_{{\alpha}_1}$ radiation was used and sample was scanned at $4^{\circ}(2{\theta})/min.$ from $25^{\circ}$ to $80^{\circ}$. The following results were obtained. 1. Oxidation peak potential in artificial saliva shifted to more anodic direction than that in saline solution. 2. The corrosion potential of high copper amalgam was more anodic than the potential of low copper amalgam. 3. The current density was lower in artificial saliva than in saline solution. 4. One of the corrosion products, AgCl was identified by X-ray diffraction analysis. 5. ${\gamma}_2$ phase was the most susceptible to corrosion and e phase was stable in low copper amalgam and ${\eta}$' phase and Ag-Cu eutectic were susceptible to corrosion in high copper amalgam.

  • PDF

Preservative Safety Analysis of the Fresh Apple Snails and their Processing Products (우렁이 생체 및 가공제품의 저장안정성 조사)

  • Oh, Byung-Tae;Kang, Sung-Won;Choi, Sung-Gil;Heo, Ho-Jin;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.340-346
    • /
    • 2008
  • This study investigated the microbial safety of apple snails and intermediate-moisture-content apple snail products subjected to various treatments, according counts of total bacteria, Escherichia coli, mold and yeast during storage at 4C Heating of raw apple snails at 95C for 5 min increased the storage period in relation to total bacteria, E. coli, mold and yeast-cell growth. Addition of 10% NaCl and 50% vinegar increased the microbial safety of apple snails. Microorganisms were not detected for 14 weeks in vacuum-packaged intermediate-moisture-content apple snail products stored at either 4C or 30C. These results suggest that heat treatment of raw apple snails, soaking in 10% NaCl and 50% vinegar solutions, and vacuum-packaging increases the shelf-life and microbial safety of apple snail products.

Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5 (항진균활성 violacein 색소를 생산하는 Collimonas sp. DEC-B5 균주의 분리 및 특성)

  • Lee, Ye-Rim;Mitchell, Robert J.;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • Forty-nine pigments were extracted from the collections of 106 pigment producing bacteria from the plant rhizosphere soil. Antibacterial activity test was performed in the subjects of the extracted pigments with plant pathogenic bacteria including Xanthomonas axonopodis and Xanthomonas campestris, and with plant pathogenic fungi including Botrytis cinerea, Colletotrichum acutatum, and Fusarium oxysporum. The yellow pigment by Chryseobacterium sp. RBR9 and the red pigment by of Methylobacterium sp. RI13 showed the antibacterial activities against Xanthomonas axonopodis and Xanthomonas campestris. The violet pigment by Collimonas sp. DEC-B5 showed the antibacterial activity as well as the antifungal activities against Botrytis cinerea and Fusarium oxysporum. Especially, the violet pigment inhibited the growth of Botrytis cinerea more than 65% at MIC $20{\mu}M$. Upon the HPLC analysis result for the isolation of pigment with antifungal activity, violacein (91.6%) and deoxyviolacein (8.4%) were isolated for the pigment by Collimonas sp. DEC-B5. The production amount of the pigment was increased more than 10 times higher when D-mannitol 1.5% and yeast extract 0.2% were added as the nitrogen source to SCB medium. This study suggests that produced violacein by Collimonas sp. DEC-B5 will be effective to control strawberry gray-mold rot fungi by its preventive activity.

Analysis of residual stress of Nitinol by surface Polishing Method (표면 연마 방법에 따른 니티놀 잔류응력 분석)

  • Jeong, Ji-Seon;Hong, Kwang-Pyo;Kim, Woon-yong;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Temperature and microbial changes of corn silage during aerobic exposure

  • Lee, Seong Shin;Lee, Hyuk Jun;Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Kim, Sang Bum;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.988-995
    • /
    • 2019
  • Objective: This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. Methods: Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at $1.2{\times}10^5$ colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a $2{\times}2$ (hybrid${\times}$inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. Results: The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. Conclusion: The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.

Effect of Acidulant Treatment on the Quality and Storage Period of Topokkidduck (산미료 단독 처리가 떡볶이 떡의 저장기간 및 품질에 미치는 영향)

  • Ra, Ha-Na;Cho, Yong-Sik;Hwang, Young;Jang, Hyun-Wook;Kim, Kyung-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.6
    • /
    • pp.613-618
    • /
    • 2020
  • This study evaluated the effects of acidulant treatment on the quality and storage period of Topokkidduck. Two samples of Topokkidduck were prepared, one soaked in 10% acidulant (10SAT) and the other without soaking in the acidulant (NSAT). During the storage period, the two samples were tested for presence of microorganisms (aerobic bacteria, E.coli, and mold) and physicochemical properties (color value, texture profile analysis (TPA)). The 10SAT could be stored for 49 days without detection of E.coli and a mold level of 1.0 log CFU/g. NSAT could be stored for only 21 days. NSAT had an aerobic count of 2.27 log CFU/g as early as 7 days, and E.coli was detected at 21 days at a level of 4.15 log CFU/g. The presence of E.coli is not permitted according to the Ministry of Food and Drug Safety (MFDS). The hardness of the 10SAT increased during the storage period but to a much lesser extent compared to the NSAT. Thus the preparation of Topokkidduck by soaking in the acidulant controlled microbial growth for up to 49 days which is a much longer period compared to the control. Also, Topokkidduck soaked in the acidulant had a softer texture than the control during the storage period.

Evaluation of Anti-Stain Efficacy of Myoung-oil, Traditional Coating Agent (전통 마감제인 명유의 방미효력 평가)

  • Yoon, Sae-Min;Park, Yonggun;Jeon, Woo-Seok;Lee, Hyun-Mi;Hwang, Wonjoung;Nam, Kee Dal;Park, Jae-Gwan
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.505-510
    • /
    • 2020
  • In this study, the anti-stain effect of the Traditional Myoung-oil, which has been reproduced through traditional method, the Clean Myoung-oil, which was developed in an eco-friendly method through scientific analysis of Traditional Myoung-oil, and the perilla oil, which is the raw material of Myoung-oil and is currently used as a finishing agent when repairing wooden cultural properties was evaluated. As a result of the evaluation, perilla oil showed almost no anti-stain effect, whereas both types of Myoung-oil showed high anti-stain effect. However, it was confirmed that the anti-stain effect was significantly reduced after 4 weeks of exposure to the strain when Myoung-oil was diluted with terpene oil, a natural solvent. Thus, it was considered that the amount of treatment in the wood affected the anti-stain effect of Myoung-oil. In other words, in constructing wooden buildings, Myoung-o il is more suitable as a finishing agent to suppress mold growth than perilla oil. And, in order to increase the applicability of Myoung-oil, it is suggested that additional research on the optimal treatment amount and treatment method that can inhibit mold growth inhibition in outdoor environments is necessary.