• Title/Summary/Keyword: Moisture permeation

Search Result 48, Processing Time 0.031 seconds

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

Characteristics of Percutaneous Absorption for Three Kinds of Phthalate (Phthalate 3종에 대한 경피투과 특성 연구)

  • Jung, Duck-Chae;Yoon, Cheol-Hun;Um, Mi-Sun;Hwang, Hyun-Suk;Baek, Jung-Hun;Choi, Jin-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.360-368
    • /
    • 2013
  • Objectives: Phthalates are used in a large variety of products including as coatings of pharmaceutical tablets, film formers, stabilizers, dispersants, emulsifying agents, and suspending agents. They have been the subject of great public concern in recent years. The extensive uses of this material have attracted attention and issues regarding its safety have been raised. Methods: In this study, three types of phthalate skin permeation were studied using matrixes such as ointments, creams and lotions in vitro. The absorption of phthalate diesters [Dimethyl phthalate (DMP), Di-n-propyl phthalate (DPP) and Di-n-pentyl phthalate (DNPP)] using film former has been measured in vitro through rat skin. Epidermal membranes were set up in Franz diffusion cells and their permeability to PBS measured in order to establish the integrity of the skin before the phthalates were applied to the epidermal surface. Results: Absorption rates for each phthalate ester were determined and permeability assessment made to quantify any irreversible alterations in barrier function due to contact with the esters. Types of phthalate in vitro experimental results quickly appeared in the following order DMP > DPP ${\geq}$ DNPP. Conclusions: In the experimental results, lotion> cream> ointment, and the permeation rate of lotion with a great amount of moisture was the fastest. Skin permeation rate is generally influenced by the chemical characteristics of a given chemical, such as molecular weight and lipophilicity. As the esters became more lipophilic and less hydrophilic, the rate of absorption decreased.

Thin film encapsulation of thin-cathode organic electroluminescent devices

  • Lee, Shih-Nan;Hwang, Shiao-Wen;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1034-1037
    • /
    • 2006
  • We have developed a novel thin film encapsulation method for thin-cathode OLED by introducing organic (not polymer)/inorganic multiple thin films to protect device, which is shown to slow down the permeation rate of moisture and oxygen. From the stability test of devices, the projected lifetime of thin-cathode OLED device with thin film encapsulation was similarly to that with glass lid encapsulation.

  • PDF

Improvement of the permeation properties with a thin hybrid - passivation layer to apply the Large-sized Organic Display Devices

  • Lee, Joo-Won;Bea, Sung-Jin;Park, Jung-Soo;Lee, Young-Hoon;Chin, Byung-Doo;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1779-1783
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1wt%) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007g/m^2$ per day at $37.8^{\circ}C$ and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Moisture Permeation Characteristics of Hollow Fiber Membrane Tube for Humidification According to Input Conditions of Wet Steam (습증기 투입 조건에 따른 가습용 중공사막 튜브 수분 투과 특성)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.620-626
    • /
    • 2018
  • Recently, fuel cell field is receiving much attention as an environmentally friendly energy in the world. Among the various types of fuel cells, in the case of PEMFC, ions move through the membrane in the middle of the unit cell. Therefore, proper moisture is required inside the PEMFC. In the case of membrane type humidifier, flat membrane or hollow fiber membrane is mainly used. Since various parameters can change the performance, the performance investigation has to be carried out with parameters. In this study, water transport of hollow fiber membrane was investigated in terms of principle operating conditions such as temperature and flow rate.

Studies on the Cracking of Nitrocellulose Clear Lacquer Coasted Films on Solid Woods of Quercus acutissima and Betula platyphylla var. japonica (상수리나무와 자작나무 소재(素材)에 대한 Nitrocellulose Clear Lacquer 도막(塗膜)의 할열(割裂)에 관(關)한 연구(硏究))

  • Kim, Hyun-Joong;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-68
    • /
    • 1989
  • This experiment was carried out to investigate the crack of coated Nitrocellulose Lacquer on flatand edge-grained boards of Quercus acutissima, ring-porous wood, and Betula platyphylla var. japonica, diffuse-porous wood, by variations of moisture contents at 7, 13 and 21%. Cold check system was used as an accelerating method for crack development, in which one cycle of the system consisted of 10 replications of each unit cycle, $60^{\circ}C$ for 4hr followdd by $-20^{\circ}C$ for 4hr. The analysis of Nitrocellulose Lacquer characteristics was made by means of water permeation measurement, F.T.I.R. spectroscopy, N.M.R. spectroscopy, gel permeation chromatography, gas chromatography, and D.S.C. The results obtained were as follows: 1. The number of cracks increased with the increasing moisture content of board. 2. The crack of coated film on flat-grained board was fewer in number than on edge-grained board. 3. The crack occurred in Quercus acutissima was more numerous on edge-grained board but less frequent on flat-grained board compared with that in Betula platyphylla var. japonica, respectively. 4. The cold crack vertically developed to the grain both in Quercus acutissima and Betula platyphylla var. japonica. 5. Water permeability in intermediate coated film was lower than in under and top coated film, but the difference was not confirmed between under and top coated film.

  • PDF

Preparation and Physical Characteristics of High-Performance Heat Storage.Release Fabrics with PCMMc : Wet coating process (상전이 마이크로캡슐이 함유된 고기능성 축열.발열 직물의 제조 및 물리적 특성 : 습식코팅)

  • Koo, Kang;Choe, Jong-Deok;Choi, Jong-Suk;Kim, Eun-Ae;Park, Young-Mi
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.24-30
    • /
    • 2007
  • Heat storage/release system in textile is a useful tool to increase energy efficiency and enhance comfortable microclimate of clothing. Phase change materials(PCM) are used in regulating storage and release properties of thermal energy. To investigate the temperature regulating ability of fabrics with PCM microcapsule(PCMMc), Nylon fabrics were coated with PCMMc via wet processing and they were characterized by SEM, DSC and infrared thermal analyzer. Also, water moisture transpiration, water penetration resistance, peel strength and washing durability of the fabrics were assessed. The water vapor permeation and water penetration resistance decreased with increasing PCMMc content. In DSC analysis, it can be seen that the microencapsulated fabric showed both exothermic md endothermic phenomena at specific temperature. Peel strength was decreased with increasing PCMMc content.

Changes in Molecular Weight Distribution and Enzyme Susceptibility of Rice Starch by Extrusion-cooking and Simple Heat-treatment (압출조리와 단순 열처리에 의한 쌀전분의 분자량 분포변화와 효소민감성에 관한 연구)

  • Kim, Yong-Bum;Kim, Ji-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.703-709
    • /
    • 1993
  • The changes in molecular size distribution of rice starch during extrusion cooking and simple heating of rice flour were compared and the effect of subsequent enzyme treatment on the molecular size was examined. A single-screw extruder was used with varing feed moisture contents ($17{\sim}29%$) and barrel temperatures ($100{\sim}150^{\circ}C$). An aluminium capsule immersed in oil bath ($100{\sim}200^{\circ}C$) was used for the simple heat treatment of rice flour. In case of extrusion cooking the mechanical energy input varied sharply at around 23% moisture content of the feed. At the feed moisture content of $17{\sim}23%$, a significant molecular size reduction of rice starch was observed by the gel permeation chromatography using Sephacryl S-1000 gel. The intact starch molecules of above $4{\times}10^{7}$ dalton were largely disintergrated by extrusion cooking of rice flour containing the moisture content less than 23%. It was mostly degraded further into the molecules having below $5{\times}10^{6}$ dalton by ${\alpha}-amylase$ treatment. But at the feed moisture content above 26% the starch did not show molecular size reduction either by extrusion cooking or by subsequent enzyme treatment. On the contrary little changes in molecular size of starch was occured by simple heating of rice flour containing the moisture less than 20%. but slight size reduction was observed at the moisture content above 23%, where the effect of ${\alpha}-amylase$ was also observed.

  • PDF

Study on Performance of Lithium-Silicate Permeation and Changing Prosity Structure according to Water Content (수분의 함수율에 따른 공극구조의 변화와 리튬실리케이트의 침투성)

  • Kim, Kwang-Ki;Moon, Hyung-Jae;Kim, Jeong-Jin;Park, Soon-Jeon;Lee, Joo-Ho;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.769-772
    • /
    • 2008
  • Pores can become factors of reducing the capacity of concrete by being path of degradation factors and moisture can fill up pores inside of concrete, so evaluating the effect of unidirectional permeability due to moisture on pore structure of concrete structure is very important. Therefore, the change of pore structure in cases of 0%, 40%, 60%, 80% and 90% humidity being maintained on test specimens and in case of Lithium Silicate, which is chemical compound, being coated were evaluated. As a result, the condensation due to moisture could be confirmed since unidirectional permeability was decreased and the density of Pore Structure was improved as the percentage of water content was being increased. And, solution-type Lithium Silicate fills up pores of sizes around 1$\mu$m in the condition of carrying water and improves the density but the range of capacity improvement due to osmosis will be limited according to functional conditions.

  • PDF

Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete (침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가)

  • Lee, Jun Hee;Kim, Jo Soon;Sim, Yang Mo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.