• Title/Summary/Keyword: Moisture constant

Search Result 332, Processing Time 0.023 seconds

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Complex Modulus of Rough Rice Kernel under Cyclic Loading (주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소탄성율(複素彈性率))

  • Kim, M.S.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.263-271
    • /
    • 1991
  • When grains is subjected to oscillating load, the dynamic viscoelastic behavior of the material will be describe the complex modulus of the material. The complex modulus and therefore the storage modulus, the loss modulus, and the phase angle for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex relaxation moduli of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analized. The storage modulus of the rough rice kernel slightly increased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss modulus of the sample very rapidly decreased with increase in the frequency on those frequency ranges. It was shown that the storage modulus and the loss modulus of the sample increased with decrease in grain moisture content. Effect of grain moisture content on the storage modulus of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss modulus of the sample was more significant than effect of grain moisture content.

  • PDF

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

Radiation-Induced Graft Copolymerization of Methacrylic Acid and Methyl methacrylate onto Polyester.

  • Kang, Young-Kun;Chang, Hoon-Seun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1978
  • The radiation-induced graft polymerization of methacrlic acid and methyl methacrylate onto a polyester fabric was investigated with ${\gamma}$-ray as the radiation source, and the rate of grafting was examined. When acrylic acid, methacrylic acid, and methyl methacrylate were grafted onto a polyester fabric, grafting efficiency was depened upon the dielectric constant of the solvent in the monomer mixture. The yield of the graft polymerization was related to the total dose, the concentration of the monomer, and the concentration of the swelling agent. The melting point and the glass transition temperature of MA and MMA grafted copolymers were analysed by means of DTA. Physical properties, such as the moisture regain, the antistatic property, and the wicking time were measured.

  • PDF

Numerical Analysis of the Ground Penetrating Radar's Return Signal for Mine Detection at Various Frequencies and Soil Conditions (다양한 주파수 및 토양 조건에서 지뢰 탐지용 지표투과레이더 수신신호의 수치해석)

  • Hong, Jin-Young;Ju, Jung-Mung;Han, Seung-Hoon;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1412-1415
    • /
    • 2012
  • Return signals of a ground penetrating radar(GPR) for mine detection at various frequencies and soil moisture contents are analyzed in this paper. We first compute the dielectric constant, conductivity and attenuation loss based on clay loam which is Korea standard soil. The mine-detection images of GPR at various frequencies are also obtained using the finite-difference time-domain(FDTD) technique. Then, the signal-to-clutter ratio(SCR) and received power of the radar are studied. It is shown that the variable frequency channels are suitable for a GPR to detect landmines at various soil conditions.

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

Automation of Lumber Drying System(I) -Continuously Rising Temperature Drying of Pinus densiflora- (목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究)(I) -연속온도상승(連續溫度上昇)스케쥴을 이용한 목재건조장치(木材乾燥裝置) 자동화(自動化)-)

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • An electrically heated experimental lumber dry kiln was retrofitted with a computer-based control system to control kiln conditions more precisely and monitor and record several kiln variables. Flat-sawn 2.5cm-thick Pinus densiflora boards were dried in constant temperature process(65$^{\circ}C$ & 50~60 %RH) and continuously rising temperature process, respectively. The average drying rate in continuously rising temperature process was 5.7 %/hr, which was above 3 times faster than that in constant temperature process. But, the average rate of case-hardening and moisture difference between shells and cores of boards dried in continuously rising temperature process were 82 % and 5.5 %, respectively, which were much larger than those of boards dried in constant temperature process.

  • PDF

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • Lee, Seok Hyeong;Park, Jong Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.267-267
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films have been of interest due to their lower dielectric constant and compatibility with existing process tools. However instability issues related to bond and increasing dielectric constant to water absorption when the SiOF films was exposured to atmospheric ambient. Therefore, the purpose of this research is to study the effect of post oxygen plasma treatment on the resistance of moisture absorption and reliability of SiOF film. Improvement of moisture absorption resistance of SiOF film is due to the forming of thin SiO₂layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the number of Si-F bonds that tend to associate with OH bonds. However, the dielectric constant was increased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and 300℃ of substrate temperature.

Analysis of the Thermal/Mechanical Energy in Food Extrusion Process (식품 압출성형공정의 열 및 기계에너지 분석)

  • Chung, Moon-Young;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.65-71
    • /
    • 1997
  • The energy supplied by motor of extruder, being known mostly to be dissipated as heat, was classified into two kinds of energy: a thermal energy by heat dissipation and a purely mechanical energy. The thermal energy was defined as a energy in terms of temperature rise and the mechanical energy as the motor energy minus the heat dissipated energy. A method to derive the thermal energy and the relative mechanical energy (the mechanical energy calculated regarding the mechanical energy at the lowest screw speed as zero) under the condition of constant barrel temperature was developed by which an extrusion case was analyzed. When extruding com grits with moisture $(27{\sim}37%)$ at low barrel temperature $({\leq}80^{\circ}C)$, the thermal energy slightly increased with increase in the moisture content, whereas the relative mechanical energy increased to a great extent. When increasing the screw speed, the thermal energy was nearly kept constant, whereas the relative mechanical energy largely varied. It is concluded that as the moisture content increases, the role of the mechanical energy becomes more effective than the heat energy dissipated from the motor energy.

  • PDF

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.