• 제목/요약/키워드: Moe)

Search Result 562, Processing Time 0.021 seconds

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Physico-Mechanical Properties of Cement-Bonded Boards Produced from Mixture of Corn Cob Particles and Gmelina arborea Sawdust

  • Adelusi, Emmanuel Adekanye;Olaoye, Kayode Oladayo;Adelusi, Felicia Temitope;Adedokun, Samuel Ayotunde
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.79-89
    • /
    • 2021
  • Cement bonded boards of 10 mm in thickness were produced from the mixture of Gmelina arborea sawdust and corn cob particles. The strength and dimensional stability of cement bonded composites produced from these two mixtures were examined. A total of thirty experimental boards were produced at density level of 1,000 kg/㎥ with cement to fibre ratio of 2.5:1 and 3:1 and five (5) blending proportions of G. arborea sawdust to corn cob particles of 100:0; 75:25; 50:50; 25:75 and 100:0. The effect of the cement to fibre ratio and blending proportion on the Water Absorption (WA), Thickness Swelling (TS), Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The result indicates that as the mixing ratio of cement to fibre and blending proportion of maize cob (75%) to G. arborea (25%) increased, the thickness swelling, water absorption decreased, whereas the MOR and MOE increased. It also shows that most dimensionally stable and flexural strength boards were produced at the highest level of mixing ratios (3:1) and blending proportion of G. arborea to corn cob 25:75. However, the analysis of variance shows that TS and WA were significantly different, whereas, MOE and MOR were not significantly affected by mixing ratios and blending proportions. Finding of this study has shown that maize cob particles are suitable for cement bonded board production.

Seasons affect the phosphorylation of pork sarcoplasmic proteins related to meat quality

  • Zeng, Xianming;Li, Xiao;Li, Chunbao
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.96-104
    • /
    • 2022
  • Objective: Sarcoplasmic proteins include proteins that play critical roles in biological processes of living organisms. How seasons influence biological processes and meat quality of postmortem muscles through the regulation of protein phosphorylation remain to be investigated. In this study, the phosphorylation of sarcoplasmic proteins in pork longissimus muscle was investigated in four seasons. Methods: Sarcoplasmic proteins were extracted from 40 pork carcasses (10 for each season) and analyzed through ProQ Diamond staining for phosphorylation labeling and Sypro Ruby staining for total protein labeling. The pH of muscle, contents of glycogen and ATP were measured at 45 min, 3 h, and 9 h postmortem and the water (P2b, P21, and P22) was measured at 3 h and 9 h. Results: A total of 21 bands were detected. Band 8 (heat shock cognate 71 kDa protein; heat shock 70 kDa protein 1B) had higher phosphorylation level in summer than that in other seasons at 45 min postmortem. The phosphorylation levels of 3 Bands were significantly different between fast and normal pH decline groups (p<0.05). The phosphorylation levels of 4 bands showed negative associations with immobilized water (P21) and positive association with free water (P22). Conclusion: The phosphorylation levels of sarcoplasmic proteins involved in energy metabolism and heat stress response at early postmortem time differed depending on the seasons. These proteins include heat shock protein 70, pyruvate kinase, phosphoglucomutase-1, glucose-6-phosphate isomerase, and carbonic anhydrase 3. High temperatures in summer might result in the phosphorylation of those proteins, leading to pH decline and low water holding capacity.

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI;SAEFUDIN;Mahdi MUBAROK;Wayan DARMAWAN;Jamal BALFAS;Yelin ADALINA;Yusuf Sudo HADI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.542-554
    • /
    • 2023
  • This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

Development of Methodology for the Analysis of Level-of-Service of Non-Controlled Intersections (무통제 교차로의 서비스수준 결정 방법론에 관한 연구)

  • 김정현;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.31-40
    • /
    • 2003
  • Unsignalized intersections are classified into two-way-stop-controlled(TWSC) and all-way-stop-controlled(AWSC) intersections for the analysis of capacity and level of service. There is no AWSC intersection in Korea, but non-controlled intersections are common. Non-controlled intersections are operated only by the driver's decision without any control. However, the study for the analysis of capacity and level of service of the non-controlled intersection has been rare. As the first stage research, this study aims to determine the measure-of-effectiveness (MOE) for the performance evaluation of non-controlled intersections. The relationships between traffic volume and the intersection passing time (delay) and number of conflicts on each intersection are analyzed. It was found that the number of conflicts were more sensitive to the traffic volume compared with the delay. It means that number of conflicts can be the MOE for the performance of non-controlled intersection. The analysis of the number of conflicts and traffic volume showed a linear relationship, so that traffic volume can also be an MOE. The level of service of non-controlled intersection can be determined with either of the MOE's. Since the performance is also influenced by the ratio of traffic volumes of crossing streets, the traffic volume should be adjusted by the ratio. The capacity of non-controlled intersection was suggested to be 2,000veh/hr referring that of AWSC intersection in the USHCM. The criteria was suggested by evenly dividing the traffic volumes based on the capacity.

Development of Engineered Wood using Mechanical Jointing Methods with Large Elements (대형요소의 기계적 접합법을 이용한 공학목재 개발)

  • Park, Joo-Saeng;Shim, Kug-Bo;Kim, Kwang-Mo;Park, Moon-Jae;Cho, Sung-Taig;Kim, Wae-Jung
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2006
  • In this study, new engineered woods, which can be used as structural members, are developed using three different mechanical jointing methods with large elements produced from logs in a high yield. Flitches of relatively large cross-section are produced from small or medium diameter logs, and are joined with steel bolts, wood dowesl and steel lag bolts. Static bending tests are performed for these three types of built-up beams. Built-up beams joined with steel bolts show $514kgf/cm^2$ for MOR and $129,000kgf/cm^2$ for MOE, which are close to those of typical structural glulams. In case that wood dowels and steel lag bolts are used, elements are isolated as load increases and resists the applied load individually. Therefore, built-up beams joined with wood dowels or steel lag bolts show almost half of steel bolts for both MOE and MOR. From the results of this study, it was indicated that bending properties of engineered woods manufactured using mechanical jointing methods with large elements are influenced mainly by jointing performance between each elements.

  • PDF

Genetic Variants of NBS1 Predict Clinical Outcome of Platinum-based Chemotherapy in Advanced Non-small Cell Lung Cancer in Chinese

  • Xu, Jia-Li;Hu, Ling-Min;Huang, Ming-De;Zhao, Wan;Yin, Yong-Mei;Hu, Zhi-Bin;Ma, Hong-Xia;Shen, Hong-Bing;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.851-856
    • /
    • 2012
  • Objective: NBS1 plays a key role in the repair of DNA double-strand break (DSB). We conducted this study to investigate the effect of two critical polymorphisms (rs1805794 and rs13312840) in NBS1 on treatment response and prognosis of advanced non-small cell lung cancer (NSCLC) patients with platinum-based chemotherapy. Methods: Using TaqMan methods, we genotyped the two polymorphisms in 147 NSCLC patients. Odds ratios (ORs) and their 95% confidential intervals (CIs) were calculated as a measure of difference in the response rate of platinum-based chemotherapy using logistic regression analysis. The Kaplan-Meier and log-rank tests were used to assess the differences in progression-free survival (PFS) and overall survival (OS). Cox proportional hazards model was applied to assess the hazard ratios (HRs) for PFS and OS. Results: Neither of the two polymorphisms was significantly associated with treatment response of platinum-based chemotherapy. However, patients carrying the rs1805794 CC variant genotype had a significantly improved PFS compared to those with GG genotype (16.0 vs. 8.0 months, P = 0.040). Multivariable cox regression analysis further showed that rs1805974 was a significantly favorable prognostic factor for PFS [CC/CG vs. GG: Adjusted HR = 0.62, 95% CI: 0.39-0.99; CC vs. CG/GG: Adjusted HR = 0.56, 95% CI: 0.32-0.97). Similarly, rs13312840 with a small sample size also showed a significant association with PFS (CC vs. CT/TT: Adjusted HR = 25.62, 95% CI: 1.53-428.39). Conclusions: Our findings suggest that NBS1 polymorphisms may be genetic biomarkers for NSCLC prognosis especially PFS with platinum-based chemotherapy in the Chinese population.

A Study on Blind Adaptive Algorithm for Multi-User Detection in DS-CDMA (DS-CDMA에서 다중사용자 검출을 위한 블라인드 적응 알고리즘에 관한 연구)

  • 우대호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.213-216
    • /
    • 1998
  • This paper proposes improved algorithm for multi-user detection in DS-CDMA. Each of algorithm is based on CMA algorithm. Improved LMS-CMS and LMAD-CMA are combined to macthed filter. Simulations results shown that Improved LMAD-CMA algorithm has a higher capacity than MOE in steady-state convergence properties.

  • PDF

Effect of Heat Treatment on the Bending Strength and Hardness of Wood

  • Won, Kyung-Rok;Kim, Tae-Hong;Hwang, Kyo-Kil;Chong, Song-Ho;Hong, Nam-Euy;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.303-310
    • /
    • 2012
  • Heat treatment improves dimensional stability and sound absorption properties of wood. However, mechanical properties of wood can be deteriorated during the heat treatment. The effect of heat treatment on the bending strength and hardness of wood for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. The results showed that the weight and density of wood decreased after heat treatment. It was found that the density by heat treatment was lower at $200^{\circ}C$ than that at $175^{\circ}C$. And, MOE increased with the reduced density. On the contrary, MOR and hardness decreased. In all conditions, It was found that there was a high correlation of 1% level between bending modulus of elasticity and modulus of rupture.