• Title/Summary/Keyword: Module cell

Search Result 738, Processing Time 0.024 seconds

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

A Study on the Performance Analysis of Broadband ISDN Traffic (광대역 ISDN의 트래픽 성능분석에 관한 연구)

  • 구창회;박광채;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.980-988
    • /
    • 1993
  • In this paper, performance of 8-ISDN traffic for the buffer size which is requested of important parameters in switch/multiplexer of B-ISDN with multimedia traffic is analyzed. Multimedia traffic is modeled as a traffic, which is composed of poisson distribution traffic and burst traffic with exponential/geometric ON time duration(Burst duration) Performance of traffic which is modeled as a multimedia traffic is analysed and buffer size, can provide the high quality service, is presented for the cell loss probability. It is simulated using event scheduling approach method which is provided by simulation package, PC SIMSCRIPT II.5. Simulation program is composed of PREAMBLE, MAIN, INITIAL, ARRIVAL, DEPARTURE and STOP·SIM modules. Specially, in case of mixed traffic simulation, ARRIVAL module is composed of ARRIVAL I and ARRIVAL II, and cells are generated independently by each module.

  • PDF

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

An Efficient Hardware Implementation of ARIA Block Cipher Algorithm (블록암호 알고리듬 ARIA의 효율적인 하드웨어 구현)

  • Kim, Dong-Hyeon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.91-94
    • /
    • 2012
  • This paper describes an efficient implementation of ARIA crypto algorithm which is a KS (Korea Standards) block cipher algorithm. The ARIA crypto-processor supports three master key lengths of 128/192/256-bit specified in the standard. To reduce hardware complexity, a hardware sharing is employed, which shares round function in encryption/decryption module with key initialization module. It reduces about 20% of gate counts when compared with straightforward implementation. The ARIA crypto-processor is verified by FPGA implementation, and synthesized with a 0.13-${\mu}m$ CMOS cell library. It has 33,218 gates and the estimated throughput is about 640 Mbps at 100 MHz.

  • PDF

heat distribution of photovoltaic module with current (전류에 따른 태양전지 모듈의 열 분포)

  • Kim, Tae-Bum;Jung, Tae-Hee;Shin, Jun-Oh;Won, Chang-Sub;Ji, Yang-Geun;Kong, Ji-Hyun;Kang, Gi-Hwan;Han, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.469-470
    • /
    • 2009
  • 본 논문은 전류의 변화에 따른 태양전지 모듈의 열 분포에 대하여 실험하였다. 태양전지 모듈의 경우 내구성의 문제가 대두되고 있는데 그 중에 열에 의한 노화현상이 가장 큰 문제이다. 실제적으로 태양전지 모듈에서 저 전류와 고 전류의 경우에서 서로 상이한 열 분포가 이루어지고 있다. 이번 연구를 통해 열 해석에 있어서 전류에 따른 태양전지 모듈에서의 열에 의한 노화현상을 좀 더 정확히 예측 할 수 있을 것이다.

  • PDF

The Development of the Automatic Discharge Acquisition & Management System (ADAMS) using Ubiquitous Technique

  • Park, Jae-Young;Oh, Byoung-Dong;Jeon, Seon-Mee;Kim, Jae-Bok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.488-493
    • /
    • 2006
  • Accurate river discharge is the most important factor in managing river basins and for successfully maintaining total maximum daily loads in Korea. It is not easy to measure the discharge directly in large rivers owing to physical and environmental constraints, even after investing much time and money. Recently, to overcome these historical drawbacks in river discharge measurement, we have developed the Automatic Discharge Acquisition & Management System (ADAMS) that scans the river cross-section and measures each cell $(1m{\times}1m)$ velocity using HADCP. The hardware system is composed of an HADCP sensor and winch, as well as a PC and software system for the discharge calculation module and hardware control module. It is controlled remotely via the internet and uses the velocity-depth integration method and the velocity-contour method for calculating river discharges. The characteristics of ADAMS are a ubiquitously accessible system, featuring real time automatic discharge measurement, remote control via the internet. The results using ADAMS at the Jindong stage site show less than 5% uncertainty and are 4 times more efficient than the ADCP & Q-boat system. This system can be used to measure any large river, river mouth or tributary river affected by backwater, all of which have a very difficult measuring real time discharge. The next generation of ADAMS will feature an upgrade to increase portability and GPS integration.

  • PDF

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation