• Title/Summary/Keyword: Module cell

Search Result 738, Processing Time 0.024 seconds

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

A Study on The Simulation of Photovoltaic Cell (태양광발전용 cell의 시뮬레이션에 관한 연구)

  • Lee, K.Y.;Lee, J.I.;Kim, B.I.;Jeung, S.K.;Park, Y.S.;Suh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.110-113
    • /
    • 2004
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demosnstarted in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

Optimization of Fuel-cell stack design using CFD-ACE (CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

CFD Simulation Tool for Anode-Supported Flat-Tube Solid Oxide Fuel Cell

  • Youssef M. Elsayed.;Lim, Tak-Hyoung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.151-157
    • /
    • 2006
  • A two-dimensional numerical model to study the performance of anode-supported flat-tube solid oxide fuel cell (SOFC) far the cross section of the cell in the flow direction of the fuel and air flows is developed. In this model a mass and charge balance, Maxwell-Stefan equation as well as the momentum equation by using, Darcy's law are applied in differential form. The finite element method using FEMLAB commercial software is used for meshing, discritization and solving the system of coupled differential equations. The current density distribution and fuel consumption as well as water production are analyzed. Experimental data is used to verify a predicted voltage-current density and power density versus current density to judge on the model accuracy.

A Study On The Maximum Power Point Tracking Simulation of Photovoltaic Solar Cell (PV용 Solar cell의 MPPT 시뮬레이션에 관한 연구)

  • Jeong, B.H.;Lee, K.Y.;Cho, G.B.;Baek, H.L.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.17-20
    • /
    • 2004
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demosntarted in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

Ethanol Fermentation by Cell Recycle Fermentor with a Fabric Filter (직물 여과기를 부착한 재순환 발효에 의한 에탄올 생산)

  • 정성구;이우기장호남
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.159-165
    • /
    • 1990
  • Ethanol fermentation by Scccharomyces cervisiae was carried out in the cell recycle filter system with a cheap fabric filter having a pore size of 10${\mu}$m. Maximum biomass concentrations up to 85g/1 were obtained, but in practice operational concentrations were between 50 and 80g/1. Ethanol productivity was 42g/1-hr, with an ethanol concentration of 66g/1 and an ethanol yield of over 86%. Continuous operation was possible by applying periodic backflushing. The ethanol fermentation could be carried out without difficulty at a dilution rate up to 0.8h-1 In order to obtain a high cell concentration and ethanol productivity, development of filter module with the larger filtration area is required.

  • PDF

Pattern Analysis of Maximum Power Point by means of Solar Cell Module Array Simulation (태양전지 모듈 어레이 시뮬레이션을 이용한 최대전력점 패턴분석)

  • Jeong, Ji-Won;Park, In-Gyu;Hwang, Kuk-Yeon;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • In the paper, a pattern analysis to decide whether the 1st local peak power point near open circuit voltage is the global peak power point or not, in case that the voltage and current at the 1st local peak power point are in a specific range, for Maximum Power Point Tracking on the photo voltaic power conversion system. When a solar cell panel array is shaded partially, multi-local peak power points can occur. That makes it hard to search the global peak power point. Through Tableau analysis using by piecewise linear solar cell model, V-I characteristic of a solar cell panel array circuit when partial shading problem happens, is simulated. The global peak power and the local peak power points is confirmed by simulations. Voltage and current values and patterns of V-I characteristic are analyzed. The generating efficiency of the solar cell panel array is improved, when the solar cell panel array circuit is operated at the power point estimated by setting up specific range.

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Study on the Characteristics of Low-pressure Automotive Polymer Electrolyte Membrane Fuel Cell System Efficiency with Blower Configuration (블로워 구성 변경에 따른 상압형 자동차용 고분자전해질형 연료전지 시스템의 효율 특성 연구)

  • KIM, IL-JOONG;LEE, JUNG-JAE;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • Polymer electrolyte membrane fuel cell (PEMFC) system receives great attention as a promising power device for automotive applications. For the wide commercialization, the efficiency and performance of automotive PEMFC system should be further improved in terms of total system (stack and balance of plant [BOP]). Air supply module, which is a major part of the BOP, greatly affects the efficiency of automotive PEMFC system. In this paper, a systematic study on the low-pressure automotive PEMFC system was made in an attempt to enhance the net system efficiency. This study mainly presents an investigation of the effect of blower configuration (1-blower and 2-blower) on the net system efficiency of automotive PEMFC system. For this purpose, the effect of operating pressure and cathode stoichiometry on the system efficiency was investigated with stack temperature under the fixed net system power condition. Results indicate that 1-blower system is better in system efficiency over 2-blower system under an air stoichiometry of 2. However, 2-blower system is better in system efficiency under an air stoichiometry of 3. The simulation results show that the optimum operating strategy needs to be established for various blower system configurations considering blower performance maps.