• Title/Summary/Keyword: Module cell

Search Result 738, Processing Time 0.028 seconds

Temperature Control of BIPV system considering out air temperature (외기온도를 고려한 BIPV 시스템의 온도제어)

  • Baek, Jeong-Woo;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

Agile and Intelligent Manufacturing System for a Small IT Parts Assembly (초소형 IT 부품 조립을 위한 지능형 민첩 생산시스템)

  • Kim, Won;Kang, Heui-Seok;Cho, Young-June;Jung, Ji-Young;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2007
  • The tiny camera module used in a modern cellular phone requires precise assembly processes. To meet the requirement of high resolution and functionality, the number of parts used in a camera module becomes larger and larger. As the market grows rapidly, an automatic camera phone assembly process is required. However, diverse production line and short life cycle make it difficult to build an affordable assembly line. To attack this problem, a flexible and expandable lens assembly system is proposed. To save the manufacturing line set-up time, modular concept is adopted. Also, each module is designed to have intelligence to simplify the set-up process. The assembly system is built up on the standard flat-form that includes a vibration free base, air and electric supplies, and electronic controllers, etc. Furthermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to identify without machine vision.

Performance Monitoring Study of Unglazed Transpired Solar Air Heating Module (무창 기공형 태양열 공기 난방 모듈 성능 모니터링 연구)

  • Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.67-72
    • /
    • 2002
  • Solar Air Systems (SAS) have unique advantages for space heating and tempering ventilation air. Air, unlike water, needs no protection against freezing nor are leaks damaging to the building structure or its contents. In contrast to glazed collector, unglazed steel solar collector may have higher efficiencies over glazed flat collector due to the absence of the glass. Therefore, the monitoring of SAS is so important to evaluate actual performance of SAS for right applications. This study is to provide a testing method with a movable test cell developed in KIER to evaluate the thermal performance of SAS based on international standard method ASHRAE 93-86, "Method of Testing to Determine the Thermal Performance of Solar Collectors". The monitoring tool used advanced technique LabVIEW 6i with portable notebook computer. Sample results have been obtained to access the performance of a reference and a target SAS module. The process and tool introduced here could be used to provide a performance verification data for future implementation study applications.

Expressional Subpopulation of Cancers Determined by G64, a Co-regulated Module

  • Min, Jae-Woong;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.132-136
    • /
    • 2015
  • Studies of cancer heterogeneity have received considerable attention recently, because the presence or absence of resistant sub-clones may determine whether or not certain therapeutic treatments are effective. Previously, we have reported G64, a co-regulated gene module composed of 64 different genes, can differentiate tumor intra- or inter-subpopulations in lung adenocarcinomas (LADCs). Here, we investigated whether the G64 module genes were also expressed distinctively in different subpopulations of other cancers. RNA sequencing-based transcriptome data derived from 22 cancers, except LADC, were downloaded from The Cancer Genome Atlas (TCGA). Interestingly, the 22 cancers also expressed the G64 genes in a correlated manner, as observed previously in an LADC study. Considering that gene expression levels were continuous among different tumor samples, tumor subpopulations were investigated using extreme expressional ranges of G64-i.e., tumor subpopulation with the lowest 15% of G64 expression, tumor subpopulation with the highest 15% of G64 expression, and tumor subpopulation with intermediate expression. In each of the 22 cancers, we examined whether patient survival was different among the three different subgroups and found that G64 could differentiate tumor subpopulations in six other cancers, including sarcoma, kidney, brain, liver, and esophageal cancers.

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

A High Performance Asynchronous Interface Unit for Globally-Asynchronous Locally-Synchronous Systems (전역적 비동기 지역적 동기 시스템을 위한 고성능 비동기식 접속장치)

  • 오명훈;박석재;최호용;이동익
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.321-334
    • /
    • 2003
  • Globally-Asynchronous Locally-Synchronous (GALS) systems are worthy of notice as an adequate architecture for a large scaled chip design with guaranteeing easy designs and functional confidence. In this paper, we suggest an advanced structure of the interface unit which is indispensable for GALS systems by using stoppable clocks. The proposed interface unit is composed of a sender module and a receiver module. The sender module can carry out data transmission partially without the relation to an internal clock. We have designed it with 0.25${\mu}{\textrm}{m}$ standard cell library at the gate level and simulated its operation to show performance improvement. Finally, we constructed all example circuit with the interface unit and proved the correct operation of it.

Cooling system Design to improve efficiency of BIPV System (BIPV 시스템의 효율성 향상을 위한 냉각시스템 설계)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Byung-Jun;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.323-326
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely teen studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorithm of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

A Study on the Characteristics of Dye-sensitized Solar Cell Module Using Titanium Thin Film (티타늄 박막을 이용한 염료감응형 태양전지 모듈 특성에 관한 연구)

  • Oh, Byeong-Yun;Kim, Phil-Jung
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2021
  • In this work, we consider the fabrication method and electrical characteristics of dye-sensitized solar cells (DSSCs), which use titanium (Ti) metal thin films to replace expensive fluorine tin oxide (FTO) electrodes. The thickness of the Ti thin film was changed by adjusting the deposition time of the Ti, and the surface resistance decreased as the thickness of the Ti thin film became thicker. The thickness of the Ti thin film was shown to be similar to the surface resistance of the FTO thin film at approximately 190nm and the DSSC with a thickness of approximately 250nm showed the highest energy conversion efficiency of 4.24%. Furthermore, the possibility of commercialization was confirmed by fabricating and evaluating the DSSC module.

Analysis of Power Characteristics of High-Power Shingled Photovoltaic Module with Color Application (고출력 슁글드 태양광 모듈 컬러 적용에 따른 출력 특성 분석)

  • Kim, Juhwi;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.73-76
    • /
    • 2022
  • BIPV (Building Integrated Photovoltaic) supplemented the minimum area problem required when installing existing solar modules. However, in order to apply it to buildings, research was needed to increase the aesthetics of solar modules and use them as a design. Accordingly, modules with color applied to the entire surface of the photovoltaic module were being developed, but there was a disadvantage of low power. Therefore, by dividing and bonding the cell strips, it was possible to improve the output power by applying a shingled technology in which other divided cells overlap in a busbar region where light couldn't be received. Shingled technology was advantageous for color modules because the front busbar part that degrades aesthetics was removed. In this research, four color shingled solar modules (Green, Yellow, Blue, Gray) were manufactured and power degradation was analyzed by measuring transmittance and reflectance. Gray color had 80.83% transmittance, which was 31.31% higher than Yellow, resulting in a power difference of 4.45 W.

Design and Research on High-Reliability HPEBB Used in Cascaded DSTATCOM

  • Yang, Kun;Wang, Yue;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.830-840
    • /
    • 2015
  • The H-bridge inverter is the fundamental power cell of the cascaded distribution static synchronous compensator (DSTATCOM). Thus, cell reliability is important to the compensation performance and stability of the overall system. The concept of the power electronics building block (PEBB) is an ideal solution for the power cell design. In this paper, an H-bridge inverter-based “plug and play” HPEBB is introduced into the main circuit and the controller to improve the compensation performance and reliability of the device. The section that discusses the main circuit primarily emphasizes the design of electrical parameters, physical structure, and thermal dissipation. The section that presents the controller part focuses on the principle of complex programmable logic device -based universal controller This section also analyzes typical reliability and anti-interference issues. The function and reliability of HPEBB are verified by experiments that are conducted on an HPEBB test-bed and on a 10 kV/± 10 Mvar DSTATCOM industrial prototype.