• Title/Summary/Keyword: Modulation coding schemes (MCS)

Search Result 8, Processing Time 0.023 seconds

APP-MAC-PHY Cross-Layer Video Streaming Technique over Wireless Channels

  • Park, Jaeyoung;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.398-400
    • /
    • 2014
  • In this letter, we propose a cross-layer technique jointly considering modulation coding schemes (MCSs) of medium access control (MAC) layer, source significance information (SSI) and error concealment unit of application (APP) layer, and channel quality information (CQI) of physical (PHY) layer. We demonstrate the improved video quality by the proposed technique when H.264 videos are streamed over Rayleigh fading wireless channels.

Design and Analysis of Intelligent AMC Scheme with Relay Protocols in LTE-Advanced System (LTE-Advanced 시스템에서 릴레이 프로토콜을 적용한 지능형 AMC 기법의 설계 및 분석)

  • Malik, Saransh;Kim, Bora;Moon, Sangmi;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.10-19
    • /
    • 2012
  • In this paper, we propose an Adaptive Modulation and Coding (AMC) scheme using relay protocols generally known as Relay Node (RN). The AMC scheme is used for improving the throughput and a reliability of a communication system, because of the nature of different modulation and coding schemes. We analyze the performance of relay protocols with the AMC scheme and observed that relay protocols with the AMC scheme is capable of providing better average throughput at a lower Signal to Noise Ratio (SNR) level as compared to the conventional scheme with no AMC. We perform Monte Carlo simulations with Long Term Evolution-Advanced (LTE-A) parameters to prove the performance comparison of adaptive Modulation and Coding Scheme (MCS) relay protocols with the non-adaptive MCS relay protocols. The simulation results of the proposed system with adaptive MCS prove that among the Amplify-and-Forward (AF), Decode-and-Forward (DF) and DeModulate-and-Forward (DMF), the DMF protocol performs best at a lower SNR value and also provides better average throughput.

Adaptive Modulation and Coding of MIMO in Next Generation Mobile Systems (차세대 MIMO 이동통신에서 적응변조시스템의 성능분석)

  • Kang Sung-Jin;Jang Tae-Won;You Young-Whan;Whang In-Tae;Kang Min-Goo;Kang Chang-Eon
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we combine AMC (Adaptive Modulation and Coding) with MIMO (Multiple Input Multiple Output) multiplexing to improve the throughput performance of AMC in Next Generation Communication Mobile Systems. In addition, we propose a system that adopts STD (Selection Transmit Diversity) in the combined system. The received SNR (Signal to Noise Ratio) is improved by adopting STD techniques and an improved SNR increases a probability of selecting MCS (Modulation and Coding Scheme) level that supports higher data rate. The computer simulation is performed in flat Rayleigh fading channel. The results show that higher throughput is achieved by AMC-TD schemes. AMC-STTD scheme shows about 250kbps increase in throughput. And AMC-STD with 2 transmit antennas achieves about 420 kbps throughput improvement over the conventional AMC at 9dB SNR.

  • PDF

Performance Comparison of Exponential Effective SINR Mapping with Traditional Actual Value Interface for Different Transmission Schemes in OFDM Systems (OFDM 시스템에서 전송방법에 있어 Exponential Effective SINR Mapping 방법과 기존방법과의 성능비교)

  • Iqbal, Asif;Cho, Sung-Ho;Park, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.163-165
    • /
    • 2008
  • In this paper we compare performance of exponential effective SINR mapping (EESM) with traditional actual value interface (AVI) approach for various modulation and coding schemes (MCS) in terms of coded bit error rate (BER) or block error rate (BLER) using different transmission schemes. This paper provides explanation and comparison of the two algorithms for single input single output (SISO), and single input multi-output (SIMO, 1X2) in OFDM systems. We calibrate the value of beta ($\beta$) in EESM using large number of channel realizations, here $\beta$ is a calibration constant. This paper also presents importance of beta value in EESM and how it improves the performance of OFDM wireless systems. We propose different modulation and coding schemes. Here we consider Standford university interim (SUI) channel models. Furthermore this paper also shows the detail observation of the two algorithms. Finally the conclusion review given for short summary.

  • PDF

Rate Adaptation with Q-Learning in CSMA/CA Wireless Networks

  • Cho, Soohyun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1048-1063
    • /
    • 2020
  • In this study, we propose a reinforcement learning agent to control the data transmission rates of nodes in carrier sensing multiple access with collision avoidance (CSMA/CA)-based wireless networks. We design a reinforcement learning (RL) agent, based on Q-learning. The agent learns the environment using the timeout events of packets, which are locally available in data sending nodes. The agent selects actions to control the data transmission rates of nodes that adjust the modulation and coding scheme (MCS) levels of the data packets to utilize the available bandwidth in dynamically changing channel conditions effectively. We use the ns3-gym framework to simulate RL and investigate the effects of the parameters of Q-learning on the performance of the RL agent. The simulation results indicate that the proposed RL agent adequately adjusts the MCS levels according to the changes in the network, and achieves a high throughput comparable to those of the existing data transmission rate adaptation schemes such as Minstrel.

Quality-Oriented Video Delivery over LTE

  • Pande, Amit;Ramamurthi, Vishwanath;Mohapatra, Prasant
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.168-176
    • /
    • 2013
  • Long-term evolution (LTE) is emerging as a major candidate for 4G cellular networks to satisfy the increasing demands for mobile broadband services, particularly multimedia delivery. Multiple-input multiple-output (MIMO) technology combined with orthogonal frequency division multiple access and more efficient modulation/coding schemes (MCS) are key physical layer technologies in LTE networks. However, in order to fully utilize the benefits of the advances in physical layer technologies, the MIMO configuration and MCS need to be dynamically adjusted to derive the promised gains of 4G at the application level. This paper provides a performance evaluation of video traffic with variations in the physical layer transmission parameters to suit the varying channel conditions. A quantitative analysis is provided using the perceived video quality as a video quality measure (evaluated using no-reference blocking and blurring metrics), as well as transmission delay. Experiments are performed to measure the performance with changes in modulation and code rates in poor and good channel conditions. We discuss how an adaptive scheme can optimize the performance over a varying channel.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

Efficient Channel State Feedback Scheme for Opportunistic Scheduling in OFDMA Systems by Scheduling Probability Prediction

  • Ko, Soomin;Lee, Jungsu;Lee, Byeong Gi;Park, Daeyoung
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.589-600
    • /
    • 2013
  • In this paper, we propose a new feedback scheme called mode selection-based feedback by scheduling probability prediction (SPP-MF) for channel state feedback in OFDMA downlink system. We design the scheme such that it determines the more desirable feedback mode among selective feedback by scheduling probability prediction (SPP-SF) mode and bitmap feedback by scheduling probability prediction (SPP-BF) mode, by calculating and comparing the throughputs of the two modes. In both feedback modes, each user first calculates the scheduling probability of each subchannel (i.e., the probability that a user wins the scheduling competition for a subchannel) and then forms a feedback message based on the scheduling probability. Specifically, in the SPP-SF mode, each user reports the modulation and coding scheme (MCS) levels and indices of its best S subchannels in terms of the scheduling probability. In the SPP-BF mode, each user determines its scheduling probability threshold. Then, it forms a bitmap for the subchannels according to the scheduling probability threshold and sends the bitmap along with the threshold. Numerical results reveal that the proposed SPP-MF scheme achieves significant performance gain over the existing feedback schemes.