• Title/Summary/Keyword: Modulation

Search Result 7,264, Processing Time 0.033 seconds

Markov CAC model in Wireless Mobile Networks Using AMC (AMC를 사용하는 무선 이동 네트워크에서 Markov CAC 모델)

  • Kwon Eun-Hyun;Park Hyo-Soon;Lee Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.270-277
    • /
    • 2006
  • In the wireless adaptive modulation and coding(AMC) systems, the modulation type of user's connection can be changed dynamically. and the ongoing connection might fail due to the change of modulation. In this paper, we approach the AMC-induced CAC problem by focusing on the guaranteed connection. Three kinds of calls, new, handoff, and modulation-changed calls, are considered. We propose a modified guard channel CAC scheme that allows the modulation-changed and handoff calls to use the guard channel. Then we analyze a Markov model for the CAC scheme with long-term AMC in mind. According to the simulation results, the proposed approach reduces the call dropping probability for modulation-changed calls, which suggests the threshold of guard channels can be determined based on the proposed approach.

A New PSPM Modulation Scheme for Improving the Power Efficiency (전력 효율을 개선하는 새로운 PSPM 변조 방식)

  • Choe, Jae-Hun;Son, Jong-Won;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.752-759
    • /
    • 2010
  • The low power consumption is the most important design factor for the In-Body communication system of WBAN. The conventional PSSK (Phase-Silence-Shift-keying) modulation technique can be regarded as an extension from PSK modulation. And this PSSK has better power efficiency than PSK modulation, and higher spectral efficiency than FSK modulation. PSSK modulation is to transmit two orthogonal symbols. The transmission power can be lowered because the symbol rate in signal period becomes half. BER performance is improved because transmission power is lower and the modulation symbol distance is widened. In addition, PSSK preserve the low-power and increase the data rate than FSK. In this paper, we analyzed existing PSSK and like to propose a new PSPM (Phase-Shift-Position-Modulation) modulation scheme. This PSPM is evaluated in terms of considered bandwidth efficiency and BER performance, compared with the PSSK. This PSPM modulation method transmits the information data by both PSK symbol data and symbol position data, so that we can significantly improve the power efficiency. New proposed PSPM method could be very useful for the In-body communication that requires the most power efficient system.

Performance Improvement of Adaptive Modulation Systems in Wireless Multimedia Communication Environment (무선 멀티미디어 통신 환경에서 적응변조시스템의 성능개선)

  • 강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.893-898
    • /
    • 2003
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme and coding techniques using an adaptive modulation system to achieve high throughput data transmission systems for wireless multimedia communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter(m). When the received Eb/No is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received Eb/No is low. The modulation method have been adopted QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM, 256QAM. Therefore, adaptive modulation systems with truncated type-II hybrid ARQ scheme is proper for wireless multimedia communication system that require high reliability and delay-limited applications.

Performance Analysis of Adaptive Modulation Systems with Truncated Type-II Hybrid ARQ Scheme and MRC Diversity Techniques in Nakagami Fading Environment (나카가미 페이딩 환경에서 Truncated Type-II Hybrid ARQ 방식과 최대비 합성 다이버시티 기법에 의한 적응변조방식의 성능 분석)

  • 양재훈;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.810-816
    • /
    • 2001
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme using an adaptive modulation system to achieve high throughput data transmission systems for mobile communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter(m). When the received $E_bN_0$ is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received $E_bN_0$ is low. The modulation method have been adopted QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM. Therefore, Adaptive Modulation Systems with Truncated Type-II Hybrid ARQ Scheme is proper for mobile and radio for mobile and radio data communication system that require high reliability and delay-limited applications.

  • PDF

Design and Performance Analysis of Quadrature-Amplitude-Position-Modulation Method for the High Power Efficiency (고전력 효율 Quadrature-Amplitude-Position-Modulation 변조 방식과 성능 평가)

  • Choi, Jae-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.108-113
    • /
    • 2011
  • In this paper, we propose QAPM(Quadrature Amplitude Position Modulation) modulation scheme for improving power efficiency and we compare existing PSSK(Phase Silence Shift Keying) and QAPM. An existing PSSK Modulation is extension from PSK modulation technique. The conventional PSSK modulation technique can be regarded as an extension from PSK modulation. And this PSSK has better power efficiency than PSK modulation. The Bandwidth efficiency of PSSK is half than PSK, but improved BER(Bit Error Rate) performance. A propose QAPM scheme is build on QAM. And BER performance of QAPM is better than PSSK because BER performance of QAM is better than PSK. In this paper, we compare PSSK and QAPM regard to bit error rate and throughput.

Novel Trellis-Coded Spatial Modulation over Generalized Rician Fading Channels

  • Zhang, Peng;Yuan, Dongfeng;Zhang, Haixia
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.900-910
    • /
    • 2012
  • In this paper, a novel trellis-coded spatial modulation (TCSM) design method is presented and analyzed. Inspired by the key idea of trellis-coded modulation (TCM), the detailed analysis is firstly provided on the unequal error protection performance of spatial modulation constellation. Subsequently, the Ungerboeck set partitioning rule is proposed and applied to develop a general method to design the novel TCSM schemes. Different from the conventional TCSM approaches, the novel one based on the Ungerboeck set partitioning rule has similar properties as the classic TCM, which has simple but effective code design criteria. Moreover, the novel designed schemes are robust and adaptive to the generalized Rician fading channels, which outperform the traditional TCSM ones. For examples, the novel 4-, 8-, and 16-state TCSM schemes are constructed by employing different transmit antennas and different modulation schemes in different channel conditions. Simulation results clearly demonstrate the advantages of the novel TCSM schemes over the conventional ones.

Modified Digital Pulse Width Modulator for Power Converters with a Reduced Modulation Delay

  • Qahouq, Jaber Abu;Arikatla, Varaprasad;Arunachalam, Thanukamalam
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • This paper presents a digital pulse width modulator (DPWM) with a reduced digital modulation delay (a transport delay of the modulator) during the transient response of power converters. During the transient response operation of a power converter, as a result of dynamic variations such as load step-up or step-down, the closed loop controller will continuously adjust the duty cycle in order to regulate the output voltage. The larger the modulation delays, the larger the undesired output voltage deviation from the reference point. The three conventional DPWM techniques exhibit significant leading-edge and/or trailing-edge modulation delays. The DPWM technique proposed in this paper, which results in modulation delay reductions, is discussed, experimentally tested and compared with conventional modulation techniques.

Mis-alignment Channel Performance of Error Correcting 4/6 Modulation Codes for Holographic Data Storage (홀로그래픽 저장장치를 위한 오류 정정 4/6 변조 부호의 어긋남 채널 성능)

  • Yang, Gi-Ju;Kim, Jin-Young;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.971-976
    • /
    • 2010
  • We introduce an error correcting 4/6 modulation codes for holographic data storage, and simulate under adding mis-alignment noise. The holographic data storage has two-dimensional intersymbol interference. To increase the channel performance, it is necessary to use modulation code. Furthermore, if the modulation code has trellis structure, error correcting capability is added. The error correcting 4/6 modulation code shows better performance than conventional modulation codes with and without mis-alignment noise.

Symbol Error Rate of 16-APSK Modulation (DVB-S2의 16-APSK 성능 분석)

  • Son, Jae-Seung;Lee, Yu-Sung;Park, Hyun-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.11-14
    • /
    • 2004
  • Digital Video Broadcasting - Satellite (DVB-S) [1] (EN 300 421(bibliography)) was introduced as a standard in 1994. However, by combing with higher order modulation, promise more powerful alternatives to the DVB-S / DVB-DSNG coding and modulation schemes. Variable rate coding and modulation (VCM) may employed to provide different levels of error protection to different service components. Adaptive coding and modulation (ACM) provides more exact channel protection and dynamic link adaptation to propagation conditions, targeting each individual receiving terminal. By these reasons, DVB-S2 introduced. This paper derives exact symbol error rate(SER) of 16-Amplitude Phase Shift Keying(APSK) modulation by using Craig's formula. 16-APSK modulation is used in DVB-S2. The difference between Union Bound and Craig's formula is 1.26dB in low SNR and 0.1dB in high SNR.

  • PDF

Complex Quadrature Spatial Modulation

  • Mohaisen, Manar;Lee, Saetbyeol
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.514-524
    • /
    • 2017
  • In this paper, we propose a spatial modulation (SM) scheme referred to as complex quadrature SM (CQSM). In contrast to quadrature SM (QSM), CQSM transmits two complex signal constellation symbols on the real and quadrature spatial dimensions at each channel use, increasing the spectral efficiency. To achieve that, signal symbols transmitted at any given time instant are drawn from two different modulation sets. The first modulation set is any of the conventional QAM/PSK alphabets, while the second is a rotated version of it. The optimal rotation angle is obtained through simulations for several modulation schemes and analytically proven for the case of QPSK, where both results coincide. Simulation results showed that CQSM outperformed QSM and generalized SM by approximately 5 dB and 4.5 dB, respectively, for the same transmission rate. Its performance was similar to that of QSM; however, it achieved higher transmission rates. It was additionally shown numerically and analytically that CQSM outperformed QSM for a relatively large number of transmit antennas.