• Title/Summary/Keyword: Modulated structure

Search Result 203, Processing Time 0.023 seconds

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

A Study on Music Summarization (음악요약 생성에 관한 연구)

  • Kim Sung-Tak;Kim Sang-Ho;Kim Hoi-Rin;Choi Ji-Hoon;Lee Han-Kyu;Hong Jin-Woo
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.3-14
    • /
    • 2006
  • Music summarization means a technique which automatically generates the most importantand representative a part or parts ill music content. The techniques of music summarization have been studied with two categories according to summary characteristics. The first one is that the repeated part is provided as music summary and the second provides the combined segments which consist of segments with different characteristics as music summary in music content In this paper, we propose and evaluate two kinds of music summarization techniques. The algorithm using multi-level vector quantization which provides a repeated part as music summary gives fixed-length music summary is evaluated by overlapping ration between hand-made repeated parts and automatically generated summary. As results, the overlapping ratios of conventional methods are 42.2% and 47.4%, but that of proposed method with fixed-length summary is 67.1%. Optimal length music summary is evaluated by the portion of overlapping between summary and repeated part which is different length according to music content and the result shows that automatically-generated summary expresses more effective part than fixed-length summary with optimal length. The cluster-based algorithm using 2-D similarity matrix and k-means algorithm provides the combined segments as music summary. In order to evaluate this algorithm, we use MOS test consisting of two questions(How many similar segments are in summarized music? How many segments are included in same structure?) and the results show good performance.

Parkin Interacts with the PDZ Domain of Multi-PDZ Domain Protein MUPP1 (Parkin과 Multi-PDZ Domain Protein (MUPP1) 단백질 간의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.820-826
    • /
    • 2014
  • The localization to specific subcellular sites and the regulation of cell surface receptors and channels are crucial for proper functioning. Postsynaptic density-95/Disks large/Zonula occludens-1 (PDZ)-domain is involved in recognition of and interaction between various proteins, by which the localization and the regulation are mediated. Multi-PDZ domain protein 1 (MUPP1) contains 13 PDZ domains. MUPP1 serves a scaffolding function for structure proteins and signaling proteins, but the mechanism how MUPP1 is stabilized and signalized has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and Parkin. Parkin is an E3 ubiquitin ligase. Loss-of-function mutations of Parkin gene are known to cause an autosomal recessive juvenile parkinsonism. Parkin bound to the $12^{th}$ PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of Parkin has a type II PDZ-association motif, which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, Parkin co-localized with MUPP1. When co-expressed with ubiquitin in HEK-293T cells, MUPP1 has been strongly ubiquitinated by Parkin. These findings collectively suggest that MUPP1 is a novel substrate of Parkin and its function or stability could be modulated by Parkin-mediated ubiquitination.