• Title/Summary/Keyword: Modulated Coordinate

Search Result 13, Processing Time 0.022 seconds

An Algorithm for Submarine Passive Sonar Simulator (잠수함 수동소나 시뮬레이터 알고리즘)

  • Jung, Young-Cheol;Kim, Byoung-Uk;An, Sang-Kyum;Seong, Woo-Jae;Lee, Keun-Hwa;Hahn, Joo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.472-483
    • /
    • 2013
  • Actual maritime exercise for improving the capability of submarine sonar operator leads to a lot of cost and constraints. Sonar simulator maximizes the capability of sonar operator and training effect by solving these problems and simulating a realistic battlefield environment. In this study, a passive sonar simulator algorithm is suggested, where the simulator is divided into three modules: maneuvering module, noise source module, and sound propagation module. Maneuvering module is implemented in three-dimensional coordinate system and time interval is set as the rate of vessel changing course. Noise source module consists of target noise, ocean ambient noise, and self noise. Target noise is divided into modulated/unmodulated and narrowband/broadband signals as their frequency characteristics, and they are applied to ship radiated noise level depending on the vessel tonnage and velocity. Ocean ambient noise is simulated depending on the wind noise considering the waveguide effect and other ambient noise. Self noise is also simulated for flow noise and insertion loss of sonar-dome. The sound propagation module is based on ray propagation, where summation of amplitude, phase, and time delay for each eigen-ray is multiplied by target noise in the frequency domain. Finally, simulated results based on various scenarios are in good agreement with generated noise in the real ocean.

A novel method for determining dose distribution on panoramic reconstruction computed tomography images from radiotherapy computed tomography

  • Hiroyuki Okamoto;Madoka Sakuramachi;Wakako Yatsuoka;Takao Ueno;Kouji Katsura;Naoya Murakami;Satoshi Nakamura;Kotaro Iijima;Takahito Chiba;Hiroki Nakayama;Yasunori Shuto;Yuki Takano;Yuta Kobayashi;Hironori Kishida;Yuka Urago;Masato Nishitani;Shuka Nishina;Koushin Arai;Hiroshi Igaki
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.129-137
    • /
    • 2024
  • Purpose: Patients with head and neck cancer (HNC) who undergo dental procedures during radiotherapy (RT) face an increased risk of developing osteoradionecrosis (ORN). Accordingly, new tools must be developed to extract critical information regarding the dose delivered to the teeth and mandible. This article proposes a novel approach for visualizing 3-dimensional planned dose distributions on panoramic reconstruction computed tomography (pCT) images. Materials and Methods: Four patients with HNC who underwent volumetric modulated arc therapy were included. One patient experienced ORN and required the extraction of teeth after RT. In the study approach, the dental arch curve (DAC) was defined using an open-source platform. Subsequently, pCT images and dose distributions were generated based on the new coordinate system. All teeth and mandibles were delineated on both the original CT and pCT images. To evaluate the consistency of dose metrics, the Mann-Whitney U test and Student t-test were employed. Results: A total of 61 teeth and 4 mandibles were evaluated. The correlation coefficient between the 2 methods was 0.999, and no statistically significant difference was observed (P>0.05). This method facilitated a straightforward and intuitive understanding of the delivered dose. In 1 patient, ORN corresponded to the region of the root and the gum receiving a high dosage (approximately 70 Gy). Conclusion: The proposed method particularly benefits dentists involved in the management of patients with HNC. It enables the visualization of a 3-dimensional dose distribution in the teeth and mandible on pCT, enhancing the understanding of the dose delivered during RT.

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF