• Title/Summary/Keyword: Modular Structures

Search Result 159, Processing Time 0.024 seconds

Safety Evaluation of 40m Combined Modular Bridge Super-Structures Based on Transportation Lifting Methods (40m 조합모듈교량 상부구조 이송에 따른 안전성 검토)

  • Park, Sung-Min;Jung, Woo-Young
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The purpose of this study was the analytical safety evaluation on the super-structure of precast modular bridge using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, 3-D full scale Finite Element (FE) of 40 m standardized modular block was developed in ABAQUS, followed by the analytical study to classify the structural system according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. The results from the analytical study revealed that the maximum stress of each modular member was within the maximum allowable stresses during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of 40 m combined modular blocks during lifting time

Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate (연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능)

  • Cho, Chang Geun;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

Influence of Analytical Models on the Seismic Response of Modular Structures (모듈러 구조물의 해석 모델이 지진응답에 미치는 영향)

  • Choi, Kyung-Suk;Lee, Ho-Chan;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.74-85
    • /
    • 2016
  • Seismic design of modular structures is usually carried out under the assumption that their load-carrying mechanism is similar to that of traditional steel moment-resisting frames(SMRFs). However, the load carry mechanism of modular structures would be different with that of traditional SMRFs because of their overlapped structural elements and complicated details of connections for the assembly of the unit-modules. In this study, nonlinear static analyses of 3 and 5-story prototype modular structures have been carried out with four different analytical models, which are established in consideration for the effects of overlapped elements and the hysteretic behavior of connections. Prototype structures present different lateral stiffness and strength depending on the modeling of overlapped elements and the rotational behavior of connections. For modular structures designed under assumption that overlapped structural elements are fully composite each other and connections between unit-modules are fixed, their lateral strength and stiffness can be over-estimated. Furthermore, it is known from the analysis results that modular structures with more than 3-stories would possess relatively low overstrength compared to traditional SMRFs.

Nonlinear Behavior Analysis of Connections Between Modular Units Using Connecting Steel Plate (연결 강판을 이용한 모듈러 유닛 간 접합부의 비선형 거동 해석)

  • Kim, Hyeon-Gu;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • Modular construction is an economical and efficient construction that reduces time and costs by manufacturing units in factories and constructing them on site. Currently, the demand for modular construction is increasing not only abroad but also domestically. As the demand for modular construction increases, a lot of development and research on connections between modular units are being conducted. Connections between modular units should be quick and simple to assemble when assembling units on site, and should be in a form that allows each unit to be connected regardless of direction. In addition, it must be able to exert sufficient strength against external loads. In this study, a connection between modular units using connecting steel plates and bolts was proposed, and the nonlinear behavior of the connection to external lateral force was analyzed through finite element analysis, and resistance performance was evaluated.

A Study on the Modular Design of Hybrid Lightweight Carbody Structures Made of Sandwich Composites and Aluminum Extrusion (샌드위치 복합재와 알루미늄 압출재를 적용한 하이브리드 경량 차체 구조물의 모듈화 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwnag-Bok;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2644-2649
    • /
    • 2011
  • The purpose of this study is to propose the modular design of hybrid lightweight carbody structures made of sandwich composites and aluminum extrusion. The sandwich composites were used for secondary structures to minimize the weight of carbody, and the aluminum extrusions were applied to primary structures to improve the stiffness of carbody and manufacturability. Key requirements were defined for the modular design of hybrid carbody, and the applied parts of sandwich composites were determined through the topology optimization analysis. Consequently, feasibility of enhancing mass saving and maintainability in modular hybrid carbody design were presented, comparing with the carbody structures made of aluminum extrusion or sandwich composites only.

  • PDF

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Seismic performance evaluations of modular house having 4-clip fastening method (4-클립 체결방식을 갖는 모듈러 하우스의 내진성능평가)

  • Lim, Hyeon-jin;Cho, Chang-Geun;Shin, Jung-Kang;Lee, Sun-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.