• 제목/요약/키워드: Modular Construction System

검색결과 173건 처리시간 0.018초

메가스포츠시설의 사후 활용을 위한 임시주거 계획 - 2018평창동계올림픽을 중심으로 - (The Planning of Temporary Housing for Post Application of Mega Sports Facilities - Focused on the 2018 Winter Olympics -)

  • 이종찬;강윤도;김병선
    • KIEAE Journal
    • /
    • 제16권4호
    • /
    • pp.41-46
    • /
    • 2016
  • Purpose: This is a study on the planning of temporary housing for post application of Mega Sports facilities. The subject of the study is 2018 Pyeongchang Winter Olympics, which is to suggest building an alternative temporary housing using shipping containers(high cube), which solve the lack of accommodations and recycle temporary housing after Olympics, save money and be eco-friendly in Olympics. Method: This study includes this ; research on the a fact-finding survey about Mega sports facilities post application and demand survey on 2018 Pyeongchang Winter Olympics accomodations and an analysis about temporary housing plan. Furthermore we decided temporary housing building plan by analyzing residents' needs and traits of the housing etc. Through this, we made a schematic design for household units. Result: As a result, this study is a plan of making space, forms, and structure. The planned size is $38.4m^2$(L:12m, W:3.2m) except balcony, and indoor height is 2.5m. The space consists of entrance, bathroom, bedroom and living room with folding furniture system. Also there's a detailed floor plan of the ceiling, wall, and floor we drew up. The ceiling and wall consist of dampproof film, noncombustible board, fire proof urethane form, and color-designed sheet. The floor is composed of floor tile, cement mortar, light concrete(with heat coil), insulation, and dampproof film. Additionally, this study is a plan of interior dry wall with detail using modular construction method for work efficiency and quality improvement.

특허분석을 통한 오일샌드 플랜트 모듈화 기술 동향 연구 (Technology Trends of Oil-sands Plant Modularization using Patent Analysis)

  • 박권우;황인주
    • 자원환경지질
    • /
    • 제49권3호
    • /
    • pp.213-224
    • /
    • 2016
  • 원유 생산의 정점이 예상되기 때문에 비전통 자원과 대체에너지에 대한 연구가 많이 진행되고 있다. 본 연구에서는 비전통 자원 중 오일샌드에 한정하였고, 동토 지역은 건설 가능한 기간이 제한적이고 현지건설인력 확보가 쉽지 않으며, 공사기간을 단축시킬 수 있는 오일샌드 플랜트 모듈화에 대한 관심이 크기 때문에 특허를 통한 기술동향을 분석해 보았다. 특허 분석은 1994년-2015년 데이터를 이용하였고 한국, 미국, 일본, 유럽 및 캐나다 특허를 분석 대상으로 하였다. 기술분류체계로 노천채굴 기술, 지하회수법 기술, 분리/개질/환원물 기술, 모듈설계/패키징 기술, 모듈운송기술 및 소재/유지관리 기술 분야로 나누었고 이를 국가별 landscape, 세부기술 동향분석, 주요 경쟁사 심층분석을 하였다. 특허 분석결과, 오일샌드 플랜트 기술은 미국 및 캐나다에 89%의 특허가 집중 되어 출원되고 있었다. 주로 경쟁사로는 Shell, Suncor 그리고 Exxon-mobil로 각각의 핵심특허를 분석하였다. 오일샌드는 타유전개발과 달리 장기간 안정적 생산량 유지가 가능한 사업적 특성을 가지므로, 장기적 관점에서 특허를 확보하여 오일샌드 사업의 경쟁력을 확보하는 것이 중요할 것으로 분석된다.

가정간호사업 운용을 위한 정보전달체계 개발 I (가정간호 데이터베이스 구축과 뇌졸중 환자의 가정간호 전산개발) (Development of the Information Delivery System for the Home Nursing Service)

  • 박정호;김매자;홍경자;한경자;박성애;윤순녕;이인숙;조현;방경숙
    • 가정∙방문간호학회지
    • /
    • 제4권
    • /
    • pp.5-22
    • /
    • 1997
  • The purpose of the study was to development an information delivery system for the home nursing service, to demonstrate and to evaluate the efficiency of it. The period of research conduct was from September 1996 to August 31, 1997. At the 1st stage to achieve the purpose, Firstly Assessment tool for the patients with cerebral vascular disease who have the first priority of HNS among the patients with various health problems at home was developed through literature review. Secondly, after identification of patient nursing problem by the home care nurse with the assessment tool, the patient's classification system developed by Park (1988) that was 128 nursing activities under 6 categories was used to identify the home care nurse's activities of the patient with CAV at home. The research team had several workshops with 5 clinical nurse experts to refine it. At last 110 nursing activities under 11 categories for the patients with CVA were derived. At the second stage, algorithms were developed to connect 110 nursing activities with the patient nursing problems identified by assessment tool. The computerizing process of the algorithms is as follows: These algorithms are realized with the computer program by use of the software engineering technique. The development is made by the prototyping method, which is the requirement analysis of the software specifications. The basic features of the usability, compatibility, adaptability and maintainability are taken into consideration. Particular emphasis is given to the efficient construction of the database. To enhance the database efficiency and to establish the structural cohesion, the data field is categorized with the weight of relevance to the particular disease. This approach permits the easy adaptability when numerous diseases are applied in the future. In paralleled with this, the expandability and maintainability is stressed through out the program development, which leads to the modular concept. However since the disease to be applied is increased in number as the project progress and since they are interrelated and coupled each other, the expand ability as well as maintainability should be considered with a big priority. Furthermore, since the system is to be synthesized with other medical systems in the future, these properties are very important. The prototype developed in this project is to be evaluated through the stage of system testing. There are various evaluation metrics such as cohesion, coupling and adaptability so on. But unfortunately, direct measurement of these metrics are very difficult, and accordingly, analytical and quantitative evaluations are almost impossible. Therefore, instead of the analytical evaluation, the experimental evaluation is to be applied through the test run by various users. This system testing will provide the viewpoint analysis of the user's level, and the detail and additional requirement specifications arising from user's real situation will be feedback into the system modeling. Also. the degree of freedom of the input and output will be improved, and the hardware limitation will be investigated. Upon the refining, the prototype system will be used as a design template. and will be used to develop the more extensive system. In detail. the relevant modules will be developed for the various diseases, and the module will be integrated by the macroscopic design process focusing on the inter modularity, generality of the database. and compatibility with other systems. The Home care Evaluation System is comprised of three main modules of : (1) General information on a patient, (2) General health status of a patient, and (3) Cerebrovascular disease patient. The general health status module has five sub modules of physical measurement, vitality, nursing, pharmaceutical description and emotional/cognition ability. The CVA patient module is divided into ten sub modules such as subjective sense, consciousness, memory and language pattern so on. The typical sub modules are described in appendix 3.

  • PDF