• 제목/요약/키워드: Modified-GNP

검색결과 6건 처리시간 0.016초

산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향 (Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites)

  • 염효열;나효열;이성재
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.502-509
    • /
    • 2014
  • 탄소기반 판상형 나노재료인 산화 그래핀(GO)과 나노 흑연(GNP)은 고분자재료에 전기 전도성을 부여하기 위한 복합재료용 나노필러로 사용되고 있다. 본 연구에서는 폴리스티렌(PS)에 나노필러를 첨가한 PS/GO와 PS/GNP 나노복합재료를 라텍스 기법으로 제조한 다음 유변학적, 전기적 물성을 비교 고찰하였다. PS 입자는 무유화제 유화중합으로 중합하였으며, GO는 흑연으로부터 modified Hummers 방법으로 합성하였다. 친수성인 GO는 첨가제 없이 PS 수성 현탁액에 분산하였으며, GNP는 분산성을 높이기 위해 계면활성제를 첨가하여 분산하였다. 나노필러에 따른 유변물성은 GO가 GNP에 비해 높게 나타났는데, GO는 단일층으로 분산이 가능한 반면, GNP는 다수의 층이 겹쳐진 형태이므로 나노 규모의 균질한 분산을 이루지 못하기 때문이다. 전도성 통로가 형성되는 지점인 전기적 임계점은 PS/GO, PS/GNP 나노복합재료에 대하여 각각 0.50, 5.82 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형 시 열처리에 의해 GO가 환원되기 때문이다.

Glycine-Nitrate Process를 이용한 산화물 출발물질로부터 $(La, Sr)MnO_3$ 분말의 제조 (Preparation of $(La, Sr)MnO_3$ Powder by Glycine-Nitrate Process Using Oxide as Starting Materials)

  • 김재동;문지웅;김구대;김창은
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1003-1008
    • /
    • 1997
  • The (La, Sr)MnO3 powder used as air-electrode material of Solid Oxide Cell (SOFC) was synthesized by Modified-GNP(Modified-Glycine Nitrate Process). The powders were prepared using oxide and carbonate stable in atmosphere and nitric acid was used as a solvent of starting material as well as an oxidant for combustion. The (La, Sr)MnO3 powders were synthesized with 0.5, 1, 2, 3, 4 of glycine/cation molar ratio. The ICP (Inductively Coupled Plasma Mass Spectrometer) result represented compositional equality between synthesized and desired powders. In case of 2 molar ratio, the as-synthesized powder showed perovskite phase and specific surface area were 19 $m^2$/g. After calcination of 85$0^{\circ}C$, the calcined powder except 0.5, 1 molar ratio of glycine to cation showed perovskite phase.

  • PDF

고온 수증기 전해용 $La_{x}Sr_{1-x}GaO_{3}$ 전극 재료의 합성 연구 (A Study on Synthesis of $La_{x}Sr_{1-x}GaO_{3}$ Electrode Material for High Temperature Steam Electrolysis)

  • 박미선;류시옥;우상국;박영태;최호상
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.432-438
    • /
    • 2009
  • In this paper, we synthesized LSG powder by Modified-GNP method. Lanthanum, strontium and gallium (LSG) were selected in the preparation of an oxygen-electrode (anode) for High Temperature Steam Electrolysis system (HTSE). The used amount and concentration of nitric acid were varied to find out an appropriate composition for oxygen-electrode (anode). In order to optimize the molar ratio of La and Sr, ratio of La to Sr was varied that 2:8, 5:5 and 8:2. The combined LSGs were calcined for 2 hours at $700^{\circ}C$ and were sintered in a furnace for 4 hours at $1200^{\circ}C$. The phase and crystallinity of LSG powder were determined by XRD. The surface morphology was observed through SEM photograph, and the specific surface area was investigated with BET. The thermochemical property was determined by TG/DTA. The synthesized preparation was obtained of $La_{0.8}Sr_{0.2}GaO_{3}$ formula for 3M nitric acid, which was the best perovskite phase.

Glycine-Nitrate Process를 이용한 고온 수증기 전해용 (La, Sr)$MnO_3$ 전극의 합성 및 특성 연구 (Preparation and Characterization of (La, Sr)$MnO_3$ Electrode for High Temperature Steam Electrolysis by Glycine-Nitrate Process)

  • 최호상;김현진;류시옥;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.46-51
    • /
    • 2007
  • LSM powder material for an oxygen-electrode(anode) of High Temperature Steam Electrolysis (RISE) was synthesized by a Modified-Glycine nitrate process(GNP). Amount of nitric acid and its concentration was varied to find out an appropriate composition for the oxygen-electrode(anode). In order to optimize the amount of Glycine used as an oxidant of self-combustion process, the ratio of Glycine to Anion was varied. $La_{0.8}Sr_{0.2}MnO_3$, $La_{0.5}Sr_{0.5}MnO_3$, and $La_{0.2}Sr_{0.8}MnO_3$ were synthesized in this study. Those LSM were dried for overnight to remove moisture from the material at $110^{\circ}C$ and were calcined 2 hours at $650^{\circ}C$ and were sintered in a furnace for 5 hours at $1400^{\circ}C$. Their structures, surface morphologies, surface areas, and weight changes were investigated with XRD, SEM, BET, and TG/DTA. The best perovskite phase for the oxygen-electrode of HTSE was obtained with $La_{0.8}Sr_{0.2}MnO_3$ formula in which 100 ml of 3M nitric acid was used in the preparation of its formula. The optimized ratio of Glycine to Anion was 2.

국가 맞춤형 폐자동차 해체시스템 선정 방법에 대한 연구 (Selection of Customized ELV (End-of-Life Vehicle) Dismantling System for Different Countries by Utilizing Fuzzy Theory and Modified QFD)

  • 이화조;박정환;황선;박성수
    • 청정기술
    • /
    • 제23권1호
    • /
    • pp.15-26
    • /
    • 2017
  • 폐자동차는 재활용 자원의 주요 원천이며 폐자동차 재활용 과정은 해체, 파쇄 및 ASR 처리 단계로 구분된다. 폐자동차 해체는 재사용 가능 부품을 수집하는 등 매우 중요한 단계인데, 크게 독립형(island type)과 라인형(line type) 으로 구분할 수 있고 다양한 유형의 해체 시스템이 존재한다. 또한 국가별 법적 규제, 폐자동차 발생량, 인구밀도, GNP 등 국가 별 특성이 다르기 때문에 특성에 맞는 적절한 해체 시스템을 체계적으로 선정하는 방법이 필요하다. 본 연구에서는 퍼지이론 및 변형 QFD를 활용하여 국가 특성에 대한 데이터 퍼지화 및 해체시스템 적합도를 평가하는 방법을 개발하였으며, 관련 데이터를 보유한 대표 국가에 대해 적용하고 결과를 평가하였다.

Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성 (Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP))

  • 이은정;황해진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.