• Title/Summary/Keyword: Modified tip

Search Result 215, Processing Time 0.028 seconds

Improvement of the Carbon Nanotube Tip by Focused Ion Beam and it Performance Evaluation (탄소나노튜브 팁의 집속이온빔에 의한 개선 및 성능 평가)

  • Han, Chang-Soo;Shin, Young-Hyun;Yoon, Yu-Hwan;Lee, Eung-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.139-144
    • /
    • 2007
  • This paper presents development of carbon nanotube (CNT) tip modified by focused ion beam (FIB) and experimental results in non-contact mode of atomic force microscopy (AFM) using fabricated tip. We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a conventional silicon tip. The morphology of the fabricated CNT tip was then modified into a desired shape using focused ion beam. We measured anodic aluminum oxide sample and trench structure to estimate the performance of FIB-modified tip and compared with those of conventional Si tip. We demonstrate that FIB modified tip in non contact mode had superior characteristics than conventional tip in the respects of wear, image resolution and sidewall measurement.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Numerical Modeling on Microsegregation with Tip-undercooling in Weld Metal of Binary Alloys (과냉을 고려한 2원계합금 용접용융부의 미시편적 거동에 대한 수치해석 모델링)

  • 박종민;박준민;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.60-68
    • /
    • 1999
  • The previously developed two dimensional model was modified in order to predict more accurately the degree of microsegregation and eutectic fraction on in weld metal whose solidification rate is very fast. The model employed the same assumptions with previous model but considered of a tip undercooling. The previously predicted microsegregation and eutectic fraction has the discrepancies between simulated and examined results in the weld metal solidification. The experiments for the weld metal solidification of 2024 A1 and Fe-Ni alloy were carried out in order to examine the reasonability and feasibility of this modified model. The concentration profile of the solute and eutectic fraction predicted by the simulation agreed well with those found from experimental works. According to the results, it was believed that the dendrite tip undercooling considered in the modified model be reasonable for predicting the degree of microsegregation more accurately in weld metla solidification. In the GTA welds, degree of dendrite-tip undercooling increases with increasing solidification rage(welding speed). This serves to increase the concentration of dendrite core and thus result in reducing the degree of segregation. And solid state diffusion(back diffusion) during solidification is very low in the weld metal solidification so that little additional homogenization of solute occurs during solidification. With consideration of tip undercooling this modified model can predict exactly degree of microsegregation and eutectic fraction from slow solidification(casting) to fast solidification(welding).

  • PDF

The Prediction of Crack Growth Retardation Behavior by Crack Tip Branching Effects (Fatigue Behavior in variable Loading Condition) (균열가지 효과를 고려한 균열 성장 지연 거동 예측 (변동하중하에서의 피로거동))

  • 권윤기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.126-136
    • /
    • 1999
  • We studied on crack growth retardation in single overloading condition. Crack tip branching which as the second mechanism on crack growth retardation was examined. Crack tip branching was observed to kinked type and forked type. It was found that the branching angle range was from 25 to 53 degree. The variations of crack driving force with branching angle were calculated with finite element method The variation of {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and total crack driving force(K) were examined respectively So {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and K mean to mode I, II and total crack driving force. Present model(Willenborg's model) for crack growth retardation prediction was modified to take into consideration the effects of crack tip branching When we predicted retardation with modified model. it was confirmed that predicted and experimental results coincided with well each other.

  • PDF

Modified Paramedian Forehead Flap for Nasal Tip Reconstruction (변형된 정중옆 이마피판을 이용한 코끝 재건례)

  • Kang, Seok Joo;Kim, Nam Hoon;Kim, Jin Woo;Sun, Hook
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.143-146
    • /
    • 2012
  • Purpose: The typical reconstructive option for the nasal tip is paramedian forehead flap. However, the forehead flap is too bulky for nasal tip reconstruction and does not look natural, and therefore, secondary operations for debulking are required. Methods: We treated a 46-year-old woman who suffered from a nose tip soft tissue defect using a modified paramedian forehead flap. The flap was elevated from the hair line of the forehead and had 3-layered structure. The distal part included skin and subcutaneous tissue, the middle part included frontalis muscle, and the proximal part had periosteum. Results: The nasal tip was not bulky and looked natural in terms of height, shape, and had 3-dimensional structure without debulking procedure. The patient was satisfied with the outcome. Conclusion: The authors' modified paramedian forehead flap may be a useful option for the treatment of nasal tip, columella, and alar defects. With these modifications, the paramedian forehead flap can provide an aesthetically acceptable nasal tip appearance without debulking.

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

A Study on the Resistance Spot Weldability of 590 MPa Grade DP Steel with Modified Electrode Tip (가공 전극을 적용한 590 MPa급 DP강의 저항 점용접에 관한 연구)

  • Lee, Sang-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The use of advanced high-strength steels (AHSS) in automotive applications has steadily increased over the past few years. Two different failure modes are generally observed in shear-tension tests for resistance spot welds of AHSS. interfacial fractures and full button pullout. Despite high load-carrying capacity. the resistance spot welds in AHSS cue prone to interfacial fractures. To improve the load carrying ability of welds during shear-lap and cross tension tests. the tip surface of the electrode was grooved in a round shape. The electrode tip surface was modified so as to concentrate the current now in the central and circumferential portion of the electrode force. The results showed that the interfacial fracture was suppressed in welds using the modified electrode. In a comparison of failure mode during mechanical tests. the welds made with the modified electrode showed a higher tendency to fail via full button pullout fracture.

Mo-tip Field Emitter Array having Modified Gate Insulator Geometry (변형된 게이트 절연막 구조를 갖는 몰리브덴 팁 전계 방출 소자)

  • Ju, Byeong-Kwon;Kim, Hoon;Lee, Nam-Yang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.59-63
    • /
    • 2000
  • For the Mo-tip field emitter array, the method by which the geometrical structure of the gate insulator wall could be modified in order to improve field emission properties(turn-on voltage and gate leakage current). The device having a gate insulator of complex shape, which means the combined geometrical structure with round shape made by wet etching and vertical shape made by dry etching processes, was fabricated and the field emission properties of the three kinds of devices were compared. As a result, the electric field applied to tip apex could be increased and gate leakage current could be decreased by employing the gate insulator having geometrical wall structure of mixed shape. Finally, the obtained empirical results were analyzed by simulation of electric field distribution at/near the tip apex and gate insulator using SNU-FEAT simulator.

  • PDF

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

Efficient baseline suppression via TIP and modified DEPTH

  • Hyun, Namgoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.51-58
    • /
    • 2022
  • The baseline flattened NMR spectrum has been achieved by several methodologies including pulse manipulation with a series of phase cycling. The background signal inherent in the probe is also main source of baseline distortion both in solution and solid NMR. The simple direct polarization with 90° pulse flipping the magnetization from the z-axis onto the receiver coil requires the strong rf pulse enough to encompass the wide frequency range to excite the resonance of interest nuclei. Albeit the perfect polarization 90° pulse, the signal from the unwanted magnetic fields such as background signal can not be completely suppressed by suitable phase cycling. Moreover, slowly baseline wiggling signal from the low 𝛾 nuclei is not easy to eliminate with multiple pulse manipulation. So there is still need to contrive the new scheme for that purpose in an adroit manner. In this article new triple pulse excitation schemes for TIP and modified DEPTH pulse sequence are analytically examined in terms of arbitrary phase and flip angle of pulse. The suitable phase cycling for these pulse trains is necessary for the good sensitivity and resolution of the spectrum. It is observed that the 13C sensitivity TIP experiment is almost equal to the CP/MAS with modified DEPTH sequence, both of which are applicable to both solid and solution state NMR.