• Title/Summary/Keyword: Modified equation

Search Result 1,402, Processing Time 0.034 seconds

Investigation of Drying Kinetics and Color Characteristics of White Radish Strips under Microwave Drying

  • Lee, Dongyoung;So, Jung Duk;Jung, Hyun Mo;Mo, Changyeun;Lee, Seung Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.237-246
    • /
    • 2018
  • Purpose: This study (a) investigated the effect of microwave power intensity and sample thickness on microwave drying characteristics of radish strips, and (b) determined the best-fit drying model for describing experimental drying data, effective moisture diffusivity ($D_{eff}$), and activation energy ($E_a$) for all drying conditions. Methods: A domestic microwave oven was modified for microwave drying and equipped with a small fan installed on the left upper side for removing water vapor during the drying process. Radishes were cut into two fixed-size strip shapes (6 and 9 mm in thickness). For drying experiments, the applied microwave power intensities ranged from 180 to 630 W at intervals of 90 W. Six drying models were evaluated to delineate the experimental drying curves of both radish strip samples. The effective moisture diffusivity ($D_{eff}$) was determined from Fick's diffusion method, and the Arrhenius equation was applied to calculate the activation energy ($E_a$). Results: The drying time was profoundly decreased as the microwave power intensity was increased regardless of the thickness of the radish strips; however, the drying rate of thicker strips was faster than that of the thinner strips up to a certain moisture content of the strip samples. The majority of the applied drying models were suitable to describe the drying characteristics of the radish strips for all drying conditions. Among the drying models, based on the model indices, the best model was the Page model. The range of estimated $D_{eff}$ for both strip samples was from $2.907{\times}10^{-9}$ to $1.215{\times}10^{-8}m^2/s$. $E_a$ for the 6- and 9-mm strips was 3.537 and 3.179 W/g, respectively. Conclusions: The microwave drying characteristics varied depending on the microwave power intensity and the thickness of the strips. In order to produce high-quality dried radish strips, the microwave power intensity should be lower than 180 W.

Gasification Kinetics of an Indonesian Subbituminous Coal Char Reactivity with $CO_2$at Elevated Pressure (가압하에서 인도네시아 아역청탄촤의 $CO_2$ 가스화 반응성에 관한 실헙적 연구)

  • 안달홍;고경호;이종민;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Gasification kinetics of an Indonesian sub-bituminous coal-char with $CO_2$at elevated pressure was investigated with a pressurised drop tube furnace reactor. The effects of reaction temperature (900~140$0^{\circ}C$), partial pressure of carbon dioxide (0.1~0.5 MPa), and total system pressure (0.5, 0.7, 1.0, 1.5MPa) on gasification rate of the coal char with $CO_2$have been determined. It was found that the gasification rate was dependent on the total system pressure with the same partial pressure and temperature. The $n^{th}$ order rate equation (R=k $P^{g}$ $_{asn}$) was modified to be R=k $P^{g}$ $_{asn}$ $P^{m}$ $_{total}$ to describe the gasification rate where the total system pressure was changed. The gasification reaction rate of char-$CO_2$at high temperature and elevated pressure may be expressed as dX/dt=(174.1)exp(-71.5/RT)( $P_{CO2}$)0.40( $P_{total}$ )0.65(1-X)$^{2}$ 3/.X> 3/.

  • PDF

Behaviors of Chloronicotinyl Insecticide Acetamiprid in Soil (Chloronicotinyl계 살충제 Acetamiprid의 토양 환경중 동태)

  • Hong, Min-Kee;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • This study was conducted to evaluate the degradation, adsorption and desorption and leaching of acetamiprid in soils. The half-life of acetamiprid in field condition was $1.7{\sim}3.3$ days in Bokhyun soil and, in case of laboratory condition, 15.5 days. Adsorption of acetamiprid was equilibrated in 12 hours incubation. In adsorption experiment using modified soils, such as oxidized soil, oxidized soil added humic acid, fulvic acid, kaolinite or montmorillinite, adsorption rate of acetamiprid was the highest in the oxidized soil added fulvic acid. The desorption rate was the lowest in the oxidized soil added fulvic acid. The adsorption and desorption results should be suggested that acetamiprid could be strongly adsorbed with soil humic materials, especially fulvic acid. When the mobility of acetamiprid in soil was calculated according to GUS (Groundwater Ubiquity Score) equation, it was prove to non-leacher, and it was confirmed in the leaching experiment with soil column. Most of acetamiprid was remained in the upper 30 cm of the soil column after eluting with water and it was not even detected in leachate.

  • PDF

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

Development of Biosensor for Simultaneous Determination of Glucose, Lactic Acid and Ethanol (포도당, 젖산 및 에탄올의 동시 측정용 바이오센서의 개발)

  • Kim, Jung-Ho;Rhie, Dong-Hee;Kim, Tae-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-34
    • /
    • 1998
  • The purpose of this study is to develop biosensor for determination of glucose, lactate, and ethanol in foods and food-stuffs simultaneously. The multiple cathode system was prepared with an oxygen electrode having one anode and hexagonal cathode. Glucose oxidase, mutarotase, lactate oxidase, alcohol oxidase and catalase were used for immobilization to determine glucose, lactate, and ethanol. These components including ethanol were simultaneously determined by the immobilized enzymes in the multiple cathode system. The determination of the components by enzyme sensor was based on the maximum slope of oxygen consumption from enzyme reaction of each sensor part. The response time for analysis was 1 min. The optimum condition for glucose, lactate and ethanol sensor was found to be 0.1 M potassium phosphate buffer, pH 7.0 at $40^{\circ}C$. Interferences of various sugars and organic acids were investigated. Less than 10% of error was found in determination of the components except organic acids. This difference was compensated by the modified equation. This system was confirmed by conventional methods. It was concluded that the multiple cathode system of this study is for an effective method to determine sugar, organic acid, ethanol simultaneously in foods.

  • PDF

Studies on the Extraction of Natural Compounds from Plants and Microorganisms Part 2. Extraction of Orange-yellow Pigment from Defatted Gardenia (생물체(生物體)로부터 천연화합물(天然化合物) 추출(抽出)에 관한 연구(硏究) 제(第)II보(報) : 지방(脂肪)을 제거한 치자로부터 치자색(色) 색소(色素) 추출(抽出)에 관한 연구(硏究))

  • Yu, Ju-Hyun;Yoo, Seung-Kon;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.30-36
    • /
    • 1975
  • The extraction efficiency of orange-yellow pigment from the Gardenia was greatly depended upon the extraction time, extraction temperature, volume of solvent used and fat contents of the Gardenia. From the experimental results, the amounts of extracted pigment (P) was proportional to the $log\;t^{\;1{\cdot}15}$ of extraction time$(t;\;0{\sim}60\;min.)$, the $log\;T^{3{\cdot}73}$ of extraction temperature$(T;\;5{\sim}60^{\circ}C)$, the $log\;S^{3{\cdot}7}$ of volume of solvent$(S;\;5{\sim}50\;ml)$, and the -4X of fat contexts of sample $(X;\;0{\sim}0.\;15)$ at $18^{\circ}C$ for 10 minutes. Finally, the modified empirical equation was derived as follow; $P{\simeq}1.15\;log\;t+3.73\;log\;T+3.7\;log\;S-4X-6.4$ In addition to that, the most optimum conditions of pigment extraction were determined as 30 minutes of operation time, $40^{\circ}C$ of temperature. Deffated Gardenia was more productive than natural Gardenia in the pigment extraction.

  • PDF

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF

A Study on Rainfall-Runoff Analysis by Geomorphological Instantaneous Unit Hydrograph (GIUH) (지형학적 순간단위도(GIUH)에 의한 강우-유출해석)

  • Choi, Hung-Sik;Park, Chung-Soo;Moon, Hyung-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.49-58
    • /
    • 2006
  • Rainfall-runoff characteristics are analysed based on the geomorphological instantaneous unit hydrograph(GIUH) derived by geomorphological parameters using geographical information system in watershed ungaged or deficient of field data. Observed data of Seom river experiment watershed at upstream of Hoengseong dam and variable slope method for hydrograph separating of direct non are used. The 4th stream order of Seom river experimental watershed is developed with a regular correlation referred to the Horton-Strahler's law of stream order. The characteristic velocity to determine shape parameter of GIUH is 1.0m/s and its equation is modified for accurate results. Hydrograph at the outlet of 4th stream order of Maeil gage station and at the outlets of 3rd stream order of Sogun and Nonggeori gage stations show a little differences in falling limb of hydrograph but agree well to the observed data in general. The results by hydrological routing with HEC-HMS to the outlet of 4th stream order of Maeil gage station which the hydrograph by GIUH obtained at Sogun and Nonggeori gage stations of 3rd stream oder are applied as upstream inputs give better agreement with observed data than those by hydrograph by GIUH obtained at Maeil gage station of 4th stream order. In general, the rainfall-runoff by GIUH has applicability to the watershed routing of ungaged project regions.

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.

The Moisture Absorption Properties of Liquid Type Epoxy Molding Compound for Chip Scale Package According to the Change of Fillers (충전재 변화에 따른 Chip Scale Package(CSP)용 액상 에폭시 수지 성형물 (Epoxy Molding Compound)의 흡습특성)

  • Kim, Whan-Gun
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.594-602
    • /
    • 2010
  • Since the requirement of the high density integration and thin package technique of semiconductor have been increasing, the main package type of semiconductor will be a chip scale package (CSP). The changes of diffusion coefficient and moisture content ratio of epoxy resin systems according to the change of liquid type epoxy resin and fillers for CSP applications were investigated. The epoxy resins used in this study are RE-304S, RE310S, and HP-4032D, and Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The micro-sized and nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these epoxy molding compound (EMC) according to the change of filler size. The temperature of glass transition (Tg) of these EMC was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these EMC according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these EMC were calculated in terms of modified Crank equation based on Ficks' law. An increase of diffusion coefficient and maximum moisture absorption ratio with Tg in these systems without filler can be observed, which are attributed to the increase of free volume with Tg. In the EMC with filler, the changes of Tg and maximum moisture absorption ratio with the filler content can be hardly observed, however, the diffusion coefficients of these systems with filler content show the outstanding changes according to the filler size. The diffusion via free volume is dominant in the EMC with micro-sized filler; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the EMC with nano-sized filler.