• Title/Summary/Keyword: Modified equation

Search Result 1,405, Processing Time 0.029 seconds

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.

Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail (휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.331-338
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Stiffness Prediction of Flatplate System According to Column Section Shape (기둥단면 형상에 따른 무량판 구조시스템 강성예측)

  • Lee, Do-Bum;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.194-202
    • /
    • 2006
  • In the present study, stiffness prediction methodologies for flat-plate structures were evaluated in comparison with the experimental results on the full-scale slab-column connections of flat-plate structures. The methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. In the present study, the equation to calculate the effective width of slabs was modified to reflect the effect of the change in the column section shape.

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.