• Title/Summary/Keyword: Modified equation

Search Result 1,410, Processing Time 0.025 seconds

Supersonic air data acquisition algorithm using total pressure sensors (전압력센서를 적용한 초고속 유동데이터 산출 알고리즘)

  • Choi, J.H.;Lee, J.Y.;Yoon, H.G.;Lim, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.215-218
    • /
    • 2011
  • An air data acquisition algorithm has been developed for the supersonic flow at the preliminary design stage with pressure data acquisition device composed of major three total pressure sensors and two static pressure sensors. Through this algorithm, Mach number, angle of attack and sideslip angle can be very easily derived with simple interpolation algorithm and predefined data tables. In this preliminary design stage, to verify the developed algorithm, the data tables are constructed with data driven by Taylor Maccoll equation. Furthermore, these data are compared and modified with computational results based on CFD analysis. The present algorithm would be useful to get supersonic air data for the various aerial vehicles and their flight tests.

  • PDF

A Study on Combustion Characteristic of the Hybrid Combustor using Non-combustible Diaphragm (비연소성 다이아프램을 적용한 하이브리드 연소기의 연소 특성 연구)

  • Moon, Keun-Hwan;Kim, Hak-Chul;Lee, Sun-Jae;Choi, Won-Jun;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.258-262
    • /
    • 2011
  • The hybrid combustion experiments using non-combustible diaphragm were performed for characteristic of regression rate and combustion efficiency. Results of experiments using diaphragm were showed that the regression rate and efficiency were increased. In addition, the larger difference between fuel grain port and diaphragm port increase the regression rate and efficiency. The modified regression rate equation was proposed with the port area ratio of fuel and diaphragm.

  • PDF

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses

  • Danish, Danish;Ozcan, Burcu;Ulucak, Recep
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2056-2065
    • /
    • 2021
  • The transition toward clean energy is an issue of great importance with growing debate in climate change mitigation. The complex nature of nuclear energy-CO2 emissions nexus makes it difficult to predict whether or not nuclear acts as a clean energy source. Hence, we examined the relationship between nuclear energy consumption and CO2 emissions in the context of the IPAT and Environmental Kuznets Curve (EKC) framework. Dynamic Auto-regressive Distributive Lag (DARDL), a newly modified econometric tool, is employed for estimation of long- and short-run dynamics by using yearly data spanning from 1971 to 2018. The empirical findings of the study revealed an instantaneous increase in nuclear energy reduces environmental pollution, which highlights that more nuclear energy power in the Indian energy system would be beneficial for climate change mitigation. The results further demonstrate that the overarching effect of population density in the IPAT equation stimulates carbon emissions. Finally, nuclear energy and population density contribute to form the EKC curve. To achieving a cleaner environment, results point out governmental policies toward the transition of nuclear energy that favours environmental sustainability.

Predictive Analyses for Activities of the Upper Extremity and Daily Living based on Impairment of the Upper Extremity in People with Stroke - Preliminary Study using Clinical Scales - (뇌졸중 환자의 위팔 손상 수준에 따른 위팔 활동과 일상생활 활동의 예측도 분석 - 임상적 평가를 이용한 예비 연구 -)

  • Jung, Young-Il;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.495-503
    • /
    • 2018
  • Purpose: This study analyzes the predictive power of upper extremity activity and the activities of daily living in patients with stroke using an easy-to-use evaluation tool. Methods: The Fugl-Meyer assessment (FMA) of the upper extremity and action research arm test (ARAT) are performed, and the Korean modified Barthel index (K-MBI) is measured. The predictive power of the upper extremity activity level and the daily activity level are analyzed using regression analysis. The statistical significance level is 0.05. Results: The coefficient of determination, R2, for predicting the ARAT using FMA was high at 0.88, but the regression equation for predicting the K-MBI using the FMA and ARAT did not show a statistically significant difference. Conclusion: The assessment of the upper extremity should be performed at the activity level, as well as the impairment level. The assessment for predicting the activities of daily living should be carried out for each level of the international classification of functioning (ICF), disability, and health, which can be linked to daily life, in addition to the assessment of the upper arm. Future research should conduct more diverse analyses using the ICF assessment tools at various levels.

Liquid-Liquid Equilibrium and Physical Properties of Aqueous Mixtures of Poly (Ethylene Glycol) 3000 with Tri-Potassium Citrate at Different pH: Experiment, Correlation and Thermodynamic Modeling

  • Ketabi, Mahnam;Pirdashti, Mohsen;Mobalegholeslam, Poorya
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.12-23
    • /
    • 2019
  • The new experimental data of liquid-liquid equilibrium (LLE) of aqueous two-phase system (ATPS) consisting of poly(ethylene glycol) 3000 + tri-potassium citrate at different pH were presented. It was found that an increase in pH resulted in the expansion of the two-phase region. The TLL and STL increased with increasing the pH values. The Merchuk equation can be appropriately employed to correlate the binodal curves and also the tie-line compositions were adjusted to both the Othmer-Tobias and Bancroft equations. In order to calculate the compositions of the phase and the ends of the tie-lines, density and refractive indices as two physical properties were used. Finally, the extended UNIQUAC, UNIFAC, Virial-(Mobalegholeslam & Bakhshi) and modified UNIQUAC-FV were used to measure the phase equilibria at different pH. The results of the models suggested that it can be used quite well to correlate the LLE in an aqueous solution of polymer-salt.

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.