• 제목/요약/키워드: Modified differential current

검색결과 49건 처리시간 0.042초

$Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection)

  • 김은숙;강용철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.

잔류자속에 무관한 변압기 보호용 수정전류차동 계전기 (Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux)

  • 강용철;김은숙
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

Estimation of Delta Winding Current and Its Application to a Compensated-Current-Differential Relay for a Y-Δ Transformer

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, En-Shu
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.255-263
    • /
    • 2010
  • The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a $Y-\Delta$ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a $Y-\Delta$ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

Y-$\Delta$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for Y-$\Delta$ Transformer Protection)

  • 강용철;김은숙;이병은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.9-13
    • /
    • 2004
  • This paper proposes a modified current differential relay for Y-$\Delta$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. The relay correctly discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

  • PDF

Modified-Current-Differential Relay for Transformer Protection

  • Kang Yong-Cheol;Jin En-Shu;Won Sung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권1호
    • /
    • pp.1-8
    • /
    • 2005
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a significant exciting current, which can cause malfunction of a current-differential relay. This paper proposes a modified-current-differential relay for transformer protection. The relay calculates the core-loss current from the induced voltage and the core-loss resistance as well as the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. A comparative study of the conventional differential relay with harmonic blocking is presented. The proposed relay not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the relay speed.

변압기 보호용 수정 전류차동 계전방식 (A Modified Current Differential Relay for Transformer Protection)

  • 강용철;김은수;원성호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권2호
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

잔류자속을 고려한 변압기 보호용 수정 전류차동 계전방식 (A Modified Current Differential Relaying Algorithm for Transformer Protection Considered by a Remanent Flux)

  • 강용철;김은숙;원성호;임의재;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.262-265
    • /
    • 2003
  • During magnetic inrush or over-excitation saturation of the core in a transformer draws a large exciting current. This can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. In order to cope with the remanent flux at the beginning. the start of saturation of the core is detected and the core flux at the instant is estimated by inserting the differential current into a magnetization curve. Then, this core flux value can be used to calculate the core flux. The proposed relay calculates the core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss current and the magnetizing current from the conventional differential current. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

  • PDF

변압기 보호용 전류비율차동 계전기의 동작영역 설정방법 (Setting Method of a Percentage Current Differential Relay for Transformer Protection)

  • 김수환;강상희
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.8-13
    • /
    • 2011
  • A percentage current differential relay is widely used for transformer protection. Because many percentage current differential relays recently use modified methods instead of conventional methods for deciding the operating characteristics of the large current region, in this paper, the operating region of a percentage current differential relay is analyzed in input-output current domain instead of operating-restraint current domain. An effective method to set the operating region when a CT is saturated is proposed with a series of investigations comparing a conventional method with the proposed modified method. The performance of the proposed method is evaluated for internal and external faults of a power transformer having the voltage rating of 345/154kV. EMTP-RV is used for the relaying data collection.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

비선형 자화특성을 고려한 3상 변압기 보호용 전류차동 계전방식 (A Current Differential Relaying Algorithm for Three-Phase Transformer Considering the Nonlinear Magnetization Characteristics of the Core)

  • 강용철;김은숙;원성호;임의재;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.320-322
    • /
    • 2003
  • This paper describes a current differential relaying algorithm for a three-phase transformer considering the nonlinear magnetization characteristics of the core. The iron-loss current is obtained from the calculated induced voltage and the core-loss resistance. The magnetizing current is calculated from the estimated core flux and the magnetization curve. The proposed algorithm uses the modified differential current, which is obtained by subtracting the iron-loss current and the magnetizing current from the conventional differential current. The various test results show that the algorithm can discriminate internal fault from magnetic inrush, overexcitation and an external fault.

  • PDF