• Title/Summary/Keyword: Modified aerosol factor

Search Result 4, Processing Time 0.018 seconds

Deduction of Aerosol Composition and Absorption factors using AERONET sun/sky radiometer (AERONET 선포토미터 데이터를 이용한 에어로졸 조성 및 광흡수 특성 인자 도출)

  • Noh, Youngmin;Lee, Chulkyu;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2013
  • The Modified Aerosol Factor (MAF) derived from spectral Single-Scattering Albedo (SSA) values was created to express the light absorption properties according to aerosol types. As a factor of the MAF, slope of a linear regression line for SSA at four wavelengths shows positive value for dust aerosol, while negative values were found for mixing with other types of aerosol. The negative values were shown by anthropogenic and smoke aerosols. The modified SSA at 1020 nm was also calculated. MAF was calculated by summing the slope and modified SSA. MAF was -1.0 for the anthropogenic and smoke aerosol and 1.5 for the dust particles. Those values were decreased by increasing light absorption property.

Approximation of most penetrating particle size for fibrous filters considering Cunningham slip correction factor

  • Jung, Chang Hoon;Yoon, Young Jun;Um, Junshik;Lee, Seoung Soo;Lee, Ji Yi;Chiao, Sen;Kim, Yong Pyo
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.439-445
    • /
    • 2020
  • In the estimation of the aerosol single fiber efficiency using fibrous filters, there is a size range, where the particles penetrate most effectively through the fibrous collectors, and corresponding minimum single fiber efficiency. For small particles in which the diffusion mechanism is dominant, the Cunningham slip correction factor (Cc) affects the single fiber efficiency and the most penetrating particle size (MPPS). Therefore, for accurate estimation, Cc is essential to be considered. However, many previous studies have neglected this factor because of its complexity and the associated difficulty in deriving the appropriate parameterization particularly for the MPPS. In this study, the expression for the MPPS, and the corresponding expression for the minimum single fiber efficiency are analytically derived, and the effects of Cc are determined. In order to accommodate the slip factor for all particle-size ranges, Cc is simplified and modified. Overall, the obtained analytical expression for the MPPS is in a good agreement with the exact solution.

Prediction of collection performance for a granular bed filter filled with various shapes of packing material (다양한 형상의 충전물로 채워진 충전층 집진기의 집진성능 예측)

  • Jae-Hyun Park;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.145-154
    • /
    • 2023
  • Granular bed filters are widely used to remove particulate matter in flue gas and are filled with various shapes of packing material. The packing material plays an important role in determining the overall collection performance, such as pressure drop and collection efficiency. The pressure drop of a granular bed filter has been calculated using the Ergun equation, while the collection efficiency has been predicted using the log-penetration equation based on the single sphere theory. However, a prediction equation of collection efficiency for a granular bed filter filled with non-spherical packing materials has not been suggested yet. Therefore, in this study, three different shapes of packing materials (sphere, cylinder, and irregular) were prepared to propose a prediction equation. The pressure drop and collection efficiency in a granular bed filter filled with each shape of packing material were measured experimentally and compared with theoretically predicted values. We found that experimentally measured pressure drops matched well with values theoretically predicted using the Ergun equation considering the shape factor. However, experimental collection efficiencies were higher than theoretical ones predicted by the log-penetration equation using the single sphere theory. We modified the log-penetration equation by employing a shape factor and found a good relationship between experimental and theoretical collection efficiencies.

Comparisons of Fit Factors Between Two Quantitative Fit Testers (PortaCount vs. MT)

  • Don-Hee Han;Hyekyung Seo;Byoung-kab Kang;Hoyeong Jang;HuiJu Kim;SuA Shim
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.500-506
    • /
    • 2022
  • This study evaluated the consistency between two quantitative fit test devices with different methods of ambient aerosol counting. Three types of respirators (N95, half mask, and full facepiece) were worn by 50 participants (male, n = 25; female, n = 25), PortaCount (Pro+ 8038) and MT (05U) were connected to one probe to one mask, and fit factors (FFs) were measured simultaneously with the original and modified protocols. As a result of comparing MT FFs with PortaCount FFs as references and by applying for the pass/fail criteria (FF = 100), the consistency between the two devices for half masks and full facepieces was very high. N95 was somewhat weaker than the two type of respirators in the consistency; however, the correlation between the two devices was very strong (p < 0.0001). The results showed that an FF of 100 as measured by PortaCount was likely to be measured as 75 by the MT. Therefore, when performing the fit test for N95 using the MT and pass level of FF 100, a certain level of adjustment is necessary, whether end-user or putting a scaling factor by manufacturer.