• Title/Summary/Keyword: Modified activated carbon

Search Result 143, Processing Time 0.027 seconds

외부 반송이 있는 생물활성탄담체(BACC) 공정에 의한 오수 중 질소${\cdot}$인의 동시 제거

  • Lee, Ho-Gyeong;Gwon, Sin;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.414-417
    • /
    • 2000
  • BACC(Biological Activated Carbon Cartridge)process is a newly developed biological process to remove organic compounds, nitrogen, and phosphorus with activated carbon granules in iron fixed-frame cartridge type. The largest defect of previous BACC process was denitrification inefficiency. The removal efficiencies of nitrogen and phosphorous with external recycle ratios $100{\sim}200%$ for synthetic wastewater were $69.8{\sim}90.1%$ and $62.18{\sim}91%$, respectively, since the modified BACC process with external recycle overcame the defect of BACC process. When external recycle ratio was increased more than 300%, T-N removal efficiencies were decreased. In the treatment of a real sewage using modified BACC process, $COD_{Cr}$, removal efficiencies were $96.3{\sim}97.5%$ which was similar to those of the previous BACC process. while T-N removal efficiencies was $88.3{\sim}95.7%$ which were superior to those of the previous BACC process.

  • PDF

Performance Evaluation of Microorganisms Immobilized Reactive Capping Materials on Elution Blocking of Organic, Nitrogen, and Phosphorus Compounds (미생물이 고정화된 반응성 피복재의 유기물, 질소 및 인 용출 차단성능 평가)

  • Park, Hyungjin;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • This study aims to evaluate the effect of capping materials on blocking pollutant elution from contaminated sediment to water body. Experiments were carried out under conditions in which the elution rate was intensified artificially using compost with high concentration of organic compound and nutrient salts instead of sediments. Activated carbon (AC), modified activated carbon (MAC), P. putida immobilized activated carbon (PBAC) and effective microorganisms immobilized activated carbon (EBAC) were used as capping materials. Zeolite (ZT) and two kinds of commercially available microorganisms immobilized zeolite products (ZC, ZN) were used for comparison experiment. The elution rate of organic compound, nitrogen and phosphorus were compared with that of control experiment. The experiments were conducted for 56 days. Concentrations of chemical oxygen demand, total nitrogen, and total phosphorus were measured to use the comparison of release rate of organic compound, nitrogen and phosphorus. From the experimental results, AC based materials showed better performance to block the elution of organic compound and nitrogen than ZT based materials. Although ZT based materials were more effective than AC and PBAC to block phosphorus, MAC and EBAC showed the best performance of phosphorus elution blocking among the all candidate materials. In conclusion, EBAC is considered as the most effective capping materials, because organic compound, nitrogen and phosphorus will be degraded continuously by EM in the long term.

Adsorption of Cesium from an Aqueous Solution Using Activated Carbon Impregnated with triethylenediamine (TEDA) (Triethylenediamine (TEDA)로 첨착된 활성탄소를 이용한 수용액에서 세슘의 흡착)

  • Jong-Soo Choi;Suk Soon Choi;Choong Jeon;Tae-Young Jeong;Jeong Hyub Ha;Jae-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • Cesium discharged from nuclear power plants requires technology for safely treating, due to its harmfulness to the human body. In this work, activated carbon impregnated with triethylenediamine (TEDA) process was applied to effectively remove cesium dissolved in aqueous solution. The surfaces on the activated carbon were chemically modified with various TEDA concentrations (2.5, 5.0, 7.5, 10.0, and 12.5%) and the optimal TEDA concentration was obtained to be 5.0% by the assessment for cesium removal efficiency. In addition, when 5.0% TEDA-impregnated activated carbon was used to treat 5.0 and 10.0 mg/L of cesium, the removal efficiency was 71.5% and 61.1%, respectively. Also, it was found to be the chemical adsorption from the adsorption kinetics experiment by temperature change. A novel remediation technology developed in this study could be practically employed for removing cesium contained in surface and ground water.

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

CO2 Adsorption of Amine Functionalized Activated Carbons

  • Meng, Longyue;Cho, Ki-Sook;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.221-224
    • /
    • 2009
  • In this work, the $CO_2$ adsorption behaviors of amine functionalized activated carbons (ACs) were investigated. The surface of ACs was modified with urea, melamine, diethylenetriamine (DETA), pentaethylenehexamine (PEHA), polyethylenimine (PEI), and 3-aminopropyl-triethoxysilane (ATPS). The various surface properties of amine functionalized ACs were characterized by Boehm's method, nitrogen full isotherms, XPS, and TGA analyses. The active ingredients impregnated on the ACs show significant influence on the adsorption for $CO_2$ and its volumes adsorbed on amine functionalized ACs are larger than that on the pristine ACs, which is due to the grafted amine groups of the AC surfaces.

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam (전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성)

  • Lee, Sangmin;Jung, Min-Jung;Lee, Kyeong Min;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-305
    • /
    • 2017
  • Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.

A Study on the Characteristics and Surface Modification of the Zeocarbon for Water Treatment

  • Kim, Seo-A;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Jung-Min
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.166-172
    • /
    • 2005
  • The objective of this study was to investigate the possibility of application for water treatment using the zeocarbon. The zeocarbon was mixture of zeolite and activated carbon. In general, the application of commercial zeocarbon to water treatment is difficult because of weak strength in water and the high pH value of effluents after water treatment. Therefore, we have modified the surface of zeocarbon. For the surface modification, we used the acid treatment to make surface functional group. As a result of modification, was created functional group on zeocarbon surface and was formed mesopore in zeocarbon. The surface modified zeocarbon was applied to removal of nitrogen. In removal experiments of nitrogen, removal efficiency was very high. And, strength of zeocarbon after water treatment and pH of effluents were stabilized. This indicates that the surface modified zeocarbon was easy to recover and reuse. Consequently, our results were shown the possibility of application for water treatment using the surface modified zeocarbon.

  • PDF

Phosphate Adsorption on Metal-Impregnated Activated Carbon (금속담지 활성탄의 인산염 흡착특성)

  • Hwang, Min-Jin;Hwang, Yu Sik;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.642-648
    • /
    • 2015
  • Oak wood based activated carbon was modified with surface impregnation of $Fe^{3+}$ and $Al^{3+}$ metal ions mixture for enhancements of phosphate adsorption capacity in aqueous solution. The phosphate adsorption capacity of the prepared metal impregnated carbon (MC) was about 8 times higher than that of the original activated carbon (OC). Adsorption equilibrium capacities of the phosphate increased with increasing system temperature. The adsorption equilibrium isotherm of phosphate on the prepared MC could be represented by the Langmuir equation. Thermodynamic parameters also indicated that adsorption system was spontaneous and endothermic reaction. The internal diffusion coefficient was measured to analyze the adsorption behavior and kinetic rate. To determine the internal diffusion coefficient, pore diffusion model (PDM) was employed and the result was in good agreement with experimental data.

Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar

  • Lee, Hyung Won;Kim, Jae-Kon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.81-86
    • /
    • 2018
  • Empty fruit bunch (EFB) char was used to remove $NO_x$ and odorous substances. The physicochemical properties of the EFB chars were altered by steam or KOH treatments. The Brunauer-Emmett-Teller surface area and porosity were measured to determine the properties of the modified EFB chars. The $deNO_x$ and adsorption test for hydrogen sulphide and acetaldehyde were performed to determine the feasibility of the modified EFB chars. The KOH-treated EFB (KEFB) char revealed higher $deNO_x$ efficiency than with commercial activated carbon. The Cu-impregnated EFB char also had high $deNO_x$ efficiency at temperatures higher than $150^{\circ}C$. The KEFB char showed the highest hydrogen sulphide and acetaldehyde adsorption ability, followed by the steam-treated EFB char and untreated EFB char. Moreover, the product prepared by sulfonation of EFB char showed excellent performance for esterification of palm fatty acid distillate for biodiesel production.

Fabrication of Ni-AC/TiO2Composites and their Photocatalytic Activity for Degradation of Methylene Blue

  • Oh, Won-Chun;Son, Joo-Hee;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun;Chen, Ming-Liang
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Activated carbon modified with nickel (Ni-AC) was employed the for preparation of Ni-activated carbon/$TiO_2$ (Ni-AC/$TiO_2$) composites. The $N_2$ adsorption data showed that the composites had a decreased surface area compared with pristine AC. This indicated blocking of the micropores on the surface of the AC, which was further supported by observation via SEM. XRD results showed that the Ni-AC/$TiO_2$ composite contained a mixed anatase and rutile phase while the untreated AC/$TiO_2$ contained only a typical single and clear anatase phase. EDX results showed the presence of C, O, and Ti with Ni peaks on the composites of Ni-AC/$TiO_2$. Subsequently, the photocatalytic effects on methylene blue (MB) were investigated. The improved decomposition of MB showed the combined effects of adsorptions and photo degradation. In particular, composites treated with Ni enhanced the photo degradation behaviors of MB.