• Title/Summary/Keyword: Modified abutment

Search Result 34, Processing Time 0.024 seconds

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.

Design Guidelines of Piled Bridge Abutment subjected to Lateral Soil Movements (교대말뚝기초의 측방이동 판정기준 분석)

  • 정상섬;이진형;서동희;김유석;장범수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.381-388
    • /
    • 2002
  • A series of centrifuge model tests were performed to investigate the behavior of piled bridge abutment subjected to lateral soil movements induced by the construction of approach embankment. In these tests, both the depth of soft clay and the rate of embankment construction are chosen as key parameters to examine the effects on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types of staged construction(1m/30days, 1m/15days) and instant construction. It is shown that, the distribution of lateral flow induced by stage embankment construction has a trapezoidal distribution. And practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values of F and modified I, as a practical guidelines, are proposed to 0.03 and 2.0, respectively.

  • PDF

Effect of splinting on abutment tooth movement when a distal extension partial denture used(II) (유리단국부의치(遊離端局部義齒) 사용시(使用時) 지태치(支台齒) 동요(動搖)에 대한 Splingting의 효과(效果)(II))

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.85-90
    • /
    • 1986
  • The effect of splinting on aqbutment tooth distal movement was performed in vitro study. An acrylic resin mandibular model with missing 2nd premolars, molars and a removable partial denture framework were constructed. The roots of the canines, 1st premolars and edentulous ridges were coated with silicone rubber. A modified Ney Surveyor was used for vertical load appkication, and abutment tooth distal movement were measured with a dial gauge with four conditions of splinting methods were tested by applying unilateral vertical loadings. The results are follows; 1. The magnitude of abutment tooth distal movement on the non-load side was less 40$\sim$69% than that occurred on the load side. 2. On the load side, reducing effect of splinting on abutment tooth movement in the condition of load side double abutment(30%), non-load side double abutment(10%), double abutments of both sides(40%) was compared with single abutments of both sides. 3. On the non-load side, reducing effect of splinting on abutment tooth movement in the condition of load side double abutment(5%), non-load side double abutment(22%), double abutments of both sides(59%) was compared with single abutments of both sides. 4. The magnitude of abutment tooth distal movement in the condition of double abutments of both sides was less 40$\sim$59% than that in the condition of single abutments of both sides.

  • PDF

Development of Abutment-H pile Connection for Large Lateral Displacements of Integral Abutment Bridges (일체식 교대 교량의 대횡변위를 위한 교대와 H형 말뚝 연결부의 개발)

  • Kim, Woo Seok;Lee, Jaeha;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.309-318
    • /
    • 2013
  • Abutment-to-pile connection in an integral abutment bridge is vulnerable to lateral displacement induced by thermal movement of the superstructure. However, previous researches have merely focused on the connection. In order to improve the performance of the connection, new abutment-to-pile connection designs were proposed based on quasi-static nonlinear finite element model. The reinforcement detail specified in PennDOT DM4 and HSS tube were barely effective in controlling crack growing but spiral rebar effectively performed to delay crack growth as well as absorbing energy capacity. However, it was found that delaying cracking and strengthening the connection also caused the high lateral load in superstructures. Consequently, shape of HP pile were modified to introduce plastic hinge of the HP pile for reducing the lateral load in superstructures. Connections with modified HP pile significantly prevented crack propagations under the lateral displacement.

A STUDY ON THE COMPLETE RETRIEVAL SYSTEM OF THE CEMENTATION TYPE IMPLANT ABUTMENT (손상 없이 영구 접착 보철물을 제거할 수 있는 cementation type 임플랜트 지대주 개발에 관한 연구)

  • Choi Jin-Ho;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.597-607
    • /
    • 2004
  • Purpose: This study was peformed to investigate the retrievability of the cemented crown from the cementation type implant abutment. Material and method: The cementation type implant abutments (NEOBIOTECH implant abutment regular, 3 degree taper, 10mm length, 4mm diameter, Ti grade III, machined surface. Hwasung, Kyunggi-do) and cemented crowns were divided into 3 groups, depending on their hole angles formed in the crowns for their retrievability. The abutments and crowns were luted with 4 kinds of cements and separation test using metal wedge was executed with Instron 4465 Universal Testing Machine and the maximum impact force of the modified crown ejector was measured. Results and conclusion : 1. All of the cementation type implant abutments and cemented crowns were separated with relatively small force by metal wedge. 2. The retrieving force was minimum when the metal wedge was applied perpendicular to the axis of abutment. 3. The force for retrieving crowns from abutments was maximum in resin cement group, and reduced in orders of zinc phosphate cement, glass ionomer cement and zinc oxide eugenol cement. 4. The maximum force obtained by the crown ejector was higher than the retrieval force in ZOE and GI cement and lower than that in ZPC and resin cement. 5. If it has similar conditions clinically, the cemented crowns luted with 2 types of cements (ZOE, GI cement) can be safely retrieved from the cementation type implant abutments by the modified crown ejector.

Characteristics of Abutment Screw Structure for Dental Implant (치과용 임플란트 지대주 나사 구조에 관한 연구)

  • Song, Jong-Beop;Choi, Il-kyung;Jung, Hyo-kyung;Kwon, Soon-Hong;Kwon, Soon-Gu;Park, Jong-Min;Kim, Jong-Soon;Jung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.

Correlation between microleakage and screw loosening at implant-abutment connection

  • Sahin, Cem;Ayyildiz, Simel
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.35-38
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the correlation between microleakage and screw loosening at different types of implant-abutment connections and/or geometries measuring the torque values before and after the leakage tests. MATERIALS AND METHODS. Three different abutment types (Intenal hex titanium, internal hex zirconium, morse tapered titanium) with different geometries were connected to its own implant fixture. All the abutments were tightened with a standard torque value then the composition was connected to the modified fluid filtration system. After the measurements of leakage removal torque values were re-measured. Kruskal-wallis test was performed for non-parametric and one-way ANOVA was performed for parametric data. The correlation was evaluated using Spearman Correlation Test (${\alpha}=0.05$). RESULTS. Significantly higher microleakage was found at the connection of implant-internal hex zirconium abutment. Observed mean torque value loss was also significantly higher than other connection geometries. Spearman tests revealed a significant correlation between microleakage and screw loosening. CONCLUSION. Microleakage may provoke screw loosening. Removing torque values rationally decrease with the increase of microleakage.

A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW (수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구)

  • Kim Jin-Man;Han Jung-Suk;Lee Sun-Hyung;Yang Jae-Ho;Lee Jae-Bong;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

A Study on the Influence Range of Lateral Movement of Abutment on the Soft Clay by MCC Model (MCC 모델에 의한 연약지반의 교대측방이동 영향범위에 관한 연구)

  • Park, Choon Sik;Kim, Jong Hwan;Baek, Jin Sool
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.195-205
    • /
    • 2013
  • This study, using the MCC Model to consider consolidation, estimated the range within which no influences occur from lateral movement and its amount of the foundation pile and abutment on the soft ground. This study performed finite element analyses, with variations on the adhesiveness and internal friction angle, depth of soft clay, embankment height, consolidation parameters, and separation distance between the abutment and embankment. The abutment's horizontal displacement exhibits linear change with a longer separation distance, and changes into an exponential form as the embankment gets closer to the abutment. As the soft clay layer becomes 10 m deeper, the horizontal displacement tends to increase 1.5~3.0 times. However, it decreases at a rate of 0.3~0.95 when adhesiveness is increased by 10 $kN/m^2$ and internal friction angle is increased by $5^{\circ}$. The increase change rate in a lateral movement amount becomes greater if it is closer to the abutment when the abutment separation distance is long. When the distance is short, the change rate of horizontal displacement increases in similar a way, but it tends to be decreasing overall.

Fragility characteristics of skewed concrete bridges accounting for ground motion directionality

  • Jeon, Jong-Su;Choi, Eunsoo;Noh, Myung-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.647-657
    • /
    • 2017
  • To achieve this goal, two four-span concrete box-girder bridges with typical configurations of California highway bridges are selected as representative bridges: an integral abutment bridge and a seat-type abutment bridge. A detailed numerical model of the representative bridges is created in OpenSees to perform dynamic analyses. To examine the effect of earthquake incidence angle on the fragility of skewed bridges, the representative bridge models are modified with different skew angles. Dynamic analyses for all bridge models are performed for all earthquake incidence angles examined. Simulated results are used to develop demand models and component and system fragility curves for the skewed bridges. The fragility characteristics are compared with regard to earthquake incidence angle. The results suggest that the earthquake incidence angle more significantly affects the seismic demand and fragilities of the integral abutment bridge than the skewed abutment bridge. Finally, a recommendation to account for the randomness due to the ground motion directionality in the fragility assessment is made in the absence of the predetermined earthquake incidence angle.