• 제목/요약/키워드: Modified PSO

검색결과 50건 처리시간 0.022초

PSO 기반 동기발전기 시스템 모델정수 추정에 관한 연구 (A Study on Parameter Estimation of the Synchronous Generator System based on the Modified PSO)

  • 최형주;김인수;이흥호
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.8-15
    • /
    • 2015
  • This paper includes a method for estimating the parameter of a synchronous generator and exciter using the modified particle swarm optimization. A solid round rotor synchronous generator and exciter have been modeled with the saturation function. They are regarded as state of being cooperative to a infinite bus. The behavior characteristic of all particles assigned to a parameter needs to be reflected in the PSO algorithm to fine out more close result to the optimal solution. The results of the simulation to estimate the parameters of the synchronous generator and exciter in the modified PSO algorithm are described.

새로운 위상 기반의 Particle Swarm Optimization 알고리즘 : 정보파급 PSO (A Modified Particle Swarm Optimization Algorithm : Information Diffusion PSO)

  • 박준혁;김병인
    • 대한산업공학회지
    • /
    • 제37권3호
    • /
    • pp.163-170
    • /
    • 2011
  • This paper proposes a modified version of Particle Swarm Optimization (PSO) called Information Diffusion PSO (ID-PSO). In PSO algorithms, premature convergence of particles could be prevented by defining proper population topology. In this paper, we propose a variant of PSO algorithm using a new population topology. We draw inspiration from the theory of information diffusion which models the transmission of information or a rumor as one-to-one interactions between people. In ID-PSO, a particle interacts with only one particle at each iteration and they share their personal best solutions and recognized best solutions. Each particle recognizes the best solution that it has experienced or has learned from another particle as the recognized best. Computational experiments on the benchmark functions show the effectiveness of the proposed algorithm compared with the existing methods which use different population topologies.

Modified PSO Based Reactive Routing for Improved Network Lifetime in WBAN

  • Sathya, G.;Evanjaline, D.J.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.139-144
    • /
    • 2022
  • Technological advancements taken the health care industry by a storm by embedding sensors in human body to measure their vitals. These smart solutions provide better and flexible health care to patients, and also easy monitoring for the medical practitioners. However, these innovative solutions provide their own set of challenges. The major challenge faced by embedding sensors in body is the issue of lack of infinite energy source. This work presents a meta-heuristic based routing model using modified PSO, and adopts an energy harvesting scheme to improve the network lifetime. The routing process is governed by modifying the fitness function of PSO to include charge, temperature and other vital factors required for node selection. A reactive routing model is adopted to ensure reliable packet delivery. Experiments have been performed and comparisons indicate that the proposed Energy Harvesting and Modified PSO (EHMP) model demonstrates low overhead, higher network lifetime and better network stability.

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

Coupling Particles Swarm Optimization for Multimodal Electromagnetic Problems

  • Pham, Minh-Trien;Song, Min-Ho;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.423-430
    • /
    • 2010
  • Particle swarm optimization (PSO) algorithm is designed to find a single global optimal point. However, the PSO needs to be modified in order to find multiple optimal points of a multimodal function. These modifications usually divide a swarm of particles into multiple subswarms; in turn, these subswarms try to find their own optimal point, resulting in multiple optimal points. In this work, we present a new PSO algorithm, called coupling PSO to find multiple optimal points of a multimodal function based on coupling particles. In the coupling PSO, each main particle may generate a new particle to form a couple, after which the couple searches its own optimal point using non-stop-moving PSO algorithm. We tested the suggested algorithm and other ones, such as clustering PSO and niche PSO, over three analytic functions. The coupling PSO algorithm was also applied to solve a significant benchmark problem, the TEAM workshop problem 22.

MG-PSO 알고리즘을 적용한 PTS 기법에 의한 OFDM 신호의 PAPR 감소 (PAPR Reduction of an OFDM Signal by use of PTS scheme with MG-PSO Algorithm)

  • 김완태;유선용;조성준
    • 대한전자공학회논문지TC
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) 시스템은 주파수 선택적 페이딩(frequency selective fading)과 협대역 간섭(narrowband interference)에 강한 전송 방식으로 대용량 데이터 통신에 적합하다. 하지만 독립적으로 변조된 많은 부반송파들의 중첩으로 신호의 진폭이 증가하여 PAPR(Peak-to-Average Power Ratio)이 증가하는 문제가 발생한다. PAPR 문제를 해결하기 위해 제안된 PTS(Partial Transmit Sequence) 기법은 OFDM 신호를 부블록으로 나눈 후 위상 가중치를 곱하여 PAPR을 감소시킬 수 있지만, 위상 가중치를 탐색하는 과정에서 계산의 복잡도가 부블록 수에 따라 지수적으로 증가하는 단점이 있다. 본 논문에서는 PTS 기법의 위상 탐색 과정에 최적화 기법인 변형된 Greedy 알고리즘과 PSO(Particle Swarm Optimization) 알고리즘을 조합한 MG-PSO(Modified Greedy algorithm-Particle Swarm Optimization) 알고리즘을 적용한 구조를 제안하였다. 이 구조는 PTS 기법의 위상 탐색 과정에서 계산 복잡도가 지수적으로 증가하는 문제를 해결하고 PAPR 감소 성능도 보장할 수 있다. 제안하는 알고리즘을 통신 시스템에 적용하였을 때 PAPR 감소 성능을 분석하였다.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

Runoff estimation using modified adaptive neuro-fuzzy inference system

  • Nath, Amitabha;Mthethwa, Fisokuhle;Saha, Goutam
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.545-553
    • /
    • 2020
  • Rainfall-Runoff modeling plays a crucial role in various aspects of water resource management. It helps significantly in resolving the issues related to flood control, protection of agricultural lands, etc. Various Machine learning and statistical-based algorithms have been used for this purpose. These techniques resulted in outcomes with an acceptable rate of success. One of the pertinent machine learning algorithms namely Adaptive Neuro Fuzzy Inference System (ANFIS) has been reported to be a very effective tool for the purpose. However, the computational complexity of ANFIS is a major hindrance in its application. In this paper, we resolved this problem of ANFIS by incorporating one of the evolutionary algorithms known as Particle Swarm Optimization (PSO) which was used in estimating the parameters pertaining to ANFIS. The results of the modified ANFIS were found to be satisfactory. The performance of this modified ANFIS is then compared with conventional ANFIS and another popular statistical modeling technique namely ARIMA model with respect to the forecasting of runoff. In the present investigation, it was found that proposed PSO-ANFIS performed better than ARIMA and conventional ANFIS with respect to the prediction accuracy of runoff.