• Title/Summary/Keyword: Modification Vehicle

Search Result 164, Processing Time 0.026 seconds

A study on the fire safety evaluation of the urban rail vehicle (Fire characteristic evaluation of interiors) (도시철도차량 화재안전도 평가에 대한연구(I) (내장재 화재특성 평가 중심으로))

  • Jung, Woo-Sung;Lee, Duck-Hee;Lee, Cheul-Kyu;Lee, Ju-Bong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.202-206
    • /
    • 2006
  • Although the urban rail vehicle is exposed to the fire disaster, most country, except only a few advanced country, is insufficient to take a measure against the fire accident. Safety regulation modification, fire safety standard of the materials. and each material's fire resistance of the rail vehicle have been upgraded until the Daegu fire disaster in Korea. For that reason, In this study, current techniques of fire safety evaluation are analyzed and fire safety degrees of rail vehicles are compared with the change of interiors which is met to the fire safety standard of urban rail vehicle.

  • PDF

Design Modification of Airframe Shape for Ultra Light Quad-Rotor Development (초소형 쿼드로터 개발을 위한 기체형상 설계변경)

  • Park, Dae-Jin;Lee, Sangchul;Park, Saeng-Jin;Song, Tae-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An ultra light quad-rotor is utilized in various areas for military and commercial purpose. Especially, the airframe shape is designed with various airframe size, weight and purpose. In this paper, the initial airframe shape of the quad-rotor was designed and manufactured. Flight test was conducted for the quad-rotor. The design modification of airframe shape was conducted to meet design requirement. By changing design, weight of airframe structure was reduced and payloads were placed to the best position. By reinforcing ribs and reducing vehicle's legs, the durability of airframe structure was enhanced.

차실 내부소음의 특성과 저감에 관한 실험적 고찰(상)

  • 정주화
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.15-20
    • /
    • 1983
  • The nature and the sources of sound in cars is discussed in the light of many previous works, and the importance of the system resonances inside cars is suggested. An investigation of a 'boom' problem in a small size passenger car is described. It was established that the 'boom' frequencies coincided with engine firing frequency and also with several system resonances. To find out main transmission path of the noise to the car interior, various possible sources were eliminated from the investigation by means of simple modification to the vehicle. Data on the structural modes of the body, and the acoustic modes of the passenger compartment at various forcing cases were obtained to provide better understanding of the problem. It was found that the acoustic resonance responsible for the boom was controlled largely the bending motion of the floor. To investigate the effect of the structural modification to the acoustic response, center floor of the car was reinforced. a great reduction of the noise inside the car especially at the offending speed range, was achieved by this modification.

  • PDF

Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique (CFD를 이용한 연료전지 차량 레이아웃 최적화)

  • Kim, Jung-Ill;Jeon, Wan-Ho;Cho, Jang-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

Development of Two Types of Radar Vehicle Detectors (두 기능을 갖는 차량검지 레이다)

  • Kim, Ihn Seok;Kim, Ki Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.108-117
    • /
    • 2003
  • In this paper, two types of radar vehicle detectors compatible with currently being used ILD(Inductive Loop Detector) without any modification has been developed. With these vehicle detectors based on FMCW altimeter and Doppler speedometer techniques at 24 GHz, the length and speed of a vehicle can be detected. For signal processing part, we have used DAQ board and programmed with LabView. For compatibility with traffic information network connected with existing ILD's, traffic information has been sent to VDS by using RS-232C standard interface. This development has improved approximately 10% in accuracy in terms of the speed and length information compared with that of the installed ILD in the test field.

  • PDF

A Study On Vehicle Interior Noise Reduction Applying FRF Based Substructuring (주파수 응답함수 합성법을 이용한 차량 실내 소음 저감에 관한 연구)

  • Oh, Sang-Hoon;Kang, Yeon-June;Sun, Jong-Cheon;Song, Moon-Sung;Kim, Seong-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.122-125
    • /
    • 2006
  • The Substructure Synthesis means the technology to predict the dynamic properties of an assembly from the properties of its components, or to predict the effect of a modification on a structure. The FRF Based Substructuring method is a kind of the Substructure Synthesis and very useful to predict the efficiency of the product in the early stage of development. Especially, the Hybrid FBS method is very useful to predict the vehicle NVH characteristics after modifying some components of the vehicle. Target components can be established on the basis of test models and FE models of the prototype constructed in the early stage of development. In this study, the Hybrid FBS method was applied to vehicle subframe and car-body in order to reduce vehicle interior noise induced by engine exciting force.

  • PDF

Analytical Prediction of Transmission Error and Load Distribution for a Plugin HEV (플러그인 HEV용 변속기전달오차와 하중분포에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle(HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error(T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of gear tooth profile and lead modification, and the predictions of transmission error and load distribution are shown under one loaded torque for the 1st gear pair of HEV gearbox. The test is also obtained before tooth micro-modification under the torque. At last, the appropriate tooth modification is used to minimize the transmission error and load distribution under the loaded torque. It is a good approach which the simulated result is used to improve the design in order to minimize the radiation gear whine noise.

Structure Borne Durability Design of a Vehicle Body Structure (차체구조의 구조기인 내구 설계)

  • 김효식;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

Optimal Design for a Structure Using Design of Experiment (실험계획법을 이용한 구조물의 최적설계)

  • 고성호;한석영;최형연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.34-39
    • /
    • 2001
  • The median barrier is one of the roadside hardware to prevent severe human and property damage from highway traffic accidents. The foreign standard of concrete median barrier was introduced and implemented without modification fitting to domestic vehicle and highway condition. In a car accident, median barrier doesn't protect vehicle effectively, especially for heavy vehicle such as bus and heavy truck. The purpose of this study is to develop the optimal performance design of concrete median barrier using the design of experiment with crash simulation analysis which is done by Pam-Crash that is one of the commercial crash simulation software. As a result of this study, an optimal design of concrete median barrier is obtained considering von Mises stress, volume and COG acceleration of truck.

  • PDF